Форум » Дискуссии » Operazionnie ysiliteli ,ZAP/AZP & (продолжение) » Ответить

Operazionnie ysiliteli ,ZAP/AZP & (продолжение)

milstar: 1941: First (vacuum tube) op-amp An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. ###################################################### It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. ######################################################################### This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that ####################################################################### would not have been possible otherwise.[3] ########################### http://en.wikipedia.org/wiki/Operational_amplifier

Ответов - 300, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All

milstar: Most advanced microwave capable ADC generating signal waveforms in multiple frequency bands up to KA https://www.youtube.com/watch?v=EIZmF3t9n7s

milstar: https://download.tek.com/document/Tek049%20Oscilloscope%20ASIC%20whitepaper%2055W-61320-0.pdf The new 12-bit ADC is the fastest in the world, running internally at 25 GS/s to give it a 25% higher sample rate per chan-nel than previous oscilloscopes in its class. The 12 bits allow for 4096 vertical digitizing levels, providing 16x more reso-lution than other oscilloscopes utilizing 8-bit ADCs. Each ADC channel is based on an interleaved Successive Approxi-mation Register (SAR) architecture, and each Tek049 chip includes four ADCs for a total throughput of 100 GS/s

milstar: RF sampling: Learning more about latency https://e2e.ti.com/blogs_/b/analogwire/posts/rf-sampling-learning-more-about-latency compare Teledyne e2v’s EV12AS350 is set to be the only 12-bit resolution ADC on the market that combines signal digitization at 5.4GSps, input bandwidth in excess of 4.8GHz and latency as low as 26 clock cycles with a noise of -150dBm/Hz. Unlike other ADCs on the market, it will be free of non-harmonic spurs, creating a pure signal for coders to manipulate in a range of demanding applications. https://semiconductors.teledyneimaging.com/en/products/data-converters/ev12as350b/


milstar: The TADF-4300 module supports sampling in the 2nd nyquist zone, to analyze signals as high as 8 GHz and provides sub-30-nanosecond latency for the A/D converter and sub 10 nanoseconds for the D/A converter https://www.militaryaerospace.com/trusted-computing/article/16715390/6u-vpx-card-set-for-ew-sigint-and-digital-radio-processing-introduced-by-curtisswright

milstar: Navy experts also will use the Curtiss-Wright SVME-183 computer boards for the Navy's AN/TPS-59(V)3 tactical missile defense radar, which can detect and track aircraft and missiles at ranges as far as 300 nautical miles. The value of the Navy contract to Curtiss-Wright has yet to be negotiated. The AN/TPS-59 from the Lockheed Martin Corp. Mission Systems and Training segment in Syracuse, N.Y., is a three-dimensional solid-state linear-phased array surveillance radar that operates in the D band (1215-1400 MHz), and has 54 transmitters that operate independently, and can also operate in the two-dimensional mode should its general-purpose computer fail. https://www.militaryaerospace.com/computers/article/16715347/navy-chooses-6u-vme-singleboard-computers-from-curtisswright-for-shipboard-radar

milstar: https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/ground-based-air-surveillance-radars/TPS-59%20Fact%20Sheet.pdf AN/TPS-59

milstar: We discuss a 12-b 18-GS/s analog-to-digital converter (ADC) implemented in 16-nm FinFET process. The ADC is composed of an integrated high-speed track-and-hold amplifier (THA) driving up to eight interleaved pipeline ADCs that employ open-loop inter-stage amplifiers. Up to 10 GS/s, https://ieeexplore.ieee.org/document/9210069

milstar: Analog device 14 bit 5 gsps 28nm process https://ieeexplore.ieee.org/document/7573537

milstar: https://web.wpi.edu/Pubs/E-project/Available/E-project-121012-102852/unrestricted/Evaluation_of_a_Microwave_Receiver.pdf he superheterodyne architecture has been the most popular choice for radio frequency(RF) receivers for the past 70 years, but the rise of high-speed sampling devices has caused experts to question the dominance of this architecture in receiver design. Ideally, the goal of all receiver designers is to connect the antenna directly to the digital signal processor (DSP), but our current level of technology cannot achieve this goal. The use of high-speed sampling devicesworks toward this goal: it shortens the analog portion of the RF front end of the receiver and moves the antenna closer to the DSP. The goal of this project was to build a new receiver architecture around a high-speed sampling device and compare it to the superheterodynearchitecture currently deployed by our sponsor.

milstar: An Adaptable 6.4 - 32 GS/s Track-and-Hold Amplifier with Track-Mode Masking for High Signal Power Applications in 55 nm SiGe-BiCMOS This paper presents a track-and-hold amplifier based on a switched emitter follower with demonstrated sampling rates from 6.4 GS/s to 32 GS/s and an analog bandwidth of up to 19 GHz in the hold-mode. Linearity measurements in the first Nyquist zone show 4.9 - 7.9 bits of accuracy for the highest sampling rate, more than 6 bits for up to 25.6 GS/s, more than 7 bits for up to 12.8 GS/s and a maximum of 8.9 bits at 6.4 GS/s, all calculated from the SNDR values. Most comparable circuits use only the THD value to calculate ENOBs, since achieving high SNR is difficult for low signal power circuits. The measurement results of the proposed track-and-hold amplifier were obtained at a high differential input voltage swing of 2.0 Vpp while they can reach even higher values at 1.0 Vpp. The 1-dB compression point is even higher, at 18.9 dBm. This makes the circuit suitable for high signal or noise power applications that demand high data rates and high linearity at the same time, including radio frequency instrumentation and receivers in radar and satellite communications. Designed as the front-end of a folding ADC, an additional benefit is the track-mode masking, recovering the common-mode level of the outputs during the input track-mode, which can be important when working with high input voltages. The third-order intercept point of 27.4 dBm at 25.6 GS/s and up to 34.7 dBm at 6.4 GS/s shows the unique combination of high signal power and high linearity in a sampling circuit above 10 GHz. This is made possible by the modern 55 nm SiGe-BiCMOS technology with high-performance HBTs. https://ieeexplore.ieee.org/document/8550911 This paper demonstrates a high-linearity track-and-hold circuit for sampling rates from 6.4 GS/s to 32 GS/s. It shows up to 19 GHz bandwidth and 8.8 bits of accuracy at a 2 Vpp differential input voltage swing. This is more than comparable high-frequency sampling circuits achieve with considerably lower input voltage range and leads consequently to the highest third-order intercept point of up to 34.7 dBm, even more than the best compared circuit achieves in InP technology. Especially CMOS sampling circuits have very restricted input swings and are not well suited for oscilloscopes and noisy environments. In particular, the implemented THA allows application in time-interleaved or single-core digitizing systems with a nominal resolution of up to 9 bits. While accuracy is higher than 7 bits until 12.4 GHz signal frequency at sampling rates up to 12.8 GS/s, the first two Nyquist zones or more can be used in this case. This can simplify system architecture significantly, since one low-pass filter is sufficient to suppress harmonic distortions of the input signal at every frequency from the second Nyquist zone on. Finally, the presented circuit can contribute to cover entire frequency bands in RF & microwave communications up to the Ka band.

milstar: https://www.analog.com/media/cn/technical-documentation/apm-pdf/adi-civilian-radar-solutions_en.pdf Visit analog.comRadar Application Introduction

milstar: One key element in the realization of a “true” digital radar intermediate-frequency (IF) receiver is the track-and-hold amplifier (THA). We propose that a THA plus a high-speed (1 to 1.5 GS/s), high dynamic range (8 to 10-bit) analog-to-digital converter (ADC) be employed to directly sample a 4 GHz IF signal present in our current-generation SAR systems. A simplified block diagram of the RF subsystem, showing the 4 GHz IF output, is shown in Figure 1. Sandia Lab https://core.ac.uk/download/pdf/192856533.pdf

milstar: THAs offer precision signal sampling over 18 GHz bandwidth, with 9-bit to 10-bit linearity from dc to beyond 10 GHz input frequencies, 1.05 mV noise, and <70 fs random aperture jitter. The device can be clocked to 4 GSPS with minimal dynamic range loss—such cases include the HMC661 and HMC1061. These THAs can be used to expand the bandwidth and/or high-frequency linearity of high-speed analog-to-digital conversion and signal acquisition systems. https://www.allaboutcircuits.com/industry-articles/extending-bandwidth-x-band-frequencies-a-track-and-hold-sampling-amplifier/

milstar: Process Wide Bandwidths in Aerospace/Defense Systems Low probability of intercept (LPI) and low probability of detection (LPD) are classes of radar systems with certain performance characteristics which make them nearly undetectable by modern intercept receivers. LPI features prevent the radar from tripping off alarm systems or passive radar-detection equipment. To provide resistance to jamming, radar systems can be architected by intelligently randomizing and spreading radar pulses over a wide frequency band so that a limited amount of signal energy will be present in any one band, using a technique known as direct-sequence-spread-spectrum (DSSS) modulation (Fig. 2). Frequency-hopping-spread-spectrum (FHSS) is another method of moving signal energy around the available bandwidth to make it more difficult to jam the signals. In these cases, more bandwidth is consumed than would normally be needed for the signal of interest. As a result, a wider receiver bandwidth is required in support of such anti-jamming approaches. 2. Direct-sequence-spread-spectrum (DSSS) systems require a wide receiver bandwidth and high dynamic range as the signal band of interest is combined with pseudorandom noise (PN) to spread communications signals into the noise floor. One of the most important factors for success in an LPI system is the use of as wide a signal transmission bandwidth as possible to disguise complex waveforms as noise. This conversely provides a higher-order challenge for intercept receiver systems that seek to detect and decipher these wideband signals. Therefore, while this creates improvements towards LPI and LPD functions, it also increases radar transceiver complexity by mandating a system that can capture the entire wide transmission bandwidth at once. The capability of an ADC to simultaneously digitize 500 MHz, 1 GHz, and larger portions of spectrum bandwidth in a single Nyquist band provides the means to tackle this system-level challenge. Moving these bands higher in frequency, beyond the first Nyquist band of an ADC, can be even more valuable. https://www.mwrf.com/technologies/mixed-signal-semiconductors/article/21846697/process-wide-bandwidths-in-aerospacedefense-systems

milstar: http://www.ecrin.com/datasheets/VADATECH/AMC526-Spec.pdf

milstar: How error-correction IP provides 20db improvements in high-speed ADC systems https://www.youtube.com/watch?v=mOYmMhxM15w

milstar: To explore this further, Figure 1 illustrates a high level overview of a typical current X-band radar system. Within this system, two analog mixing stages are typically utilized. The first stage mixes the pulsed radar return to a frequency of around 1 GHz and the second to an IF in the region of 100 MHz to 200 MHz to enable sampling of the signal using a 200 MSPS or lower ADC, to a resolution of 12 bits or higher. https://www.analog.com/en/technical-articles/the-demand-for-digital.html

milstar: As an example, take AD9680 and AD9695, which were designed using the 65 nm and 28 nm CMOS technology, respectively. At 1.25 GSPS and 1.3 GSPS, the AD9680 and AD9695 burn 3.7 W and 1.6 W, respectively. This shows that for the same architecture, give or take, the same circuit can burn about half the power on a 28 nm process as it did on a 65 nm process. The corollary to that is you can run the same circuit at twice the speed on 28 nm process, as you did at 65 nm while burning the same amount of power. The AD9208 illustrates this to a good extent. https://rfengineer.net/rfic/high-speed-adc-power-supply-domains/

milstar: re:параллельный прием, множество каналов в приемнике LRASM,,повсеместная РЛС 1.B-1B может нести во внутренних отсеках до 24 таких ракет массой чуть более тонны каждая. Такого количества целей технически вполне достаточно для того, чтобы обеспечить корабельной ПВО, и даже не китайской, "перегрузку по входу". Роберт Уорк, в прошлом заместитель министра обороны США. https://vpk.name/news/292117_sovetskii_metod_zachem_aviacii_vms_ssha_nuzhny_dalnie_raketonoscy.html ################################################################## 2. a. главной особенностью ЗРС «Бук-М2», ее изюминкой, являются значительно расширенные возможности по борьбе с современными КР на предельно малых высотах. Так, при полете КР на высоте 15 м дальность ее поражения составляет до 30–35 км, Это достигается за счет введения в состав ЗРС радиолокатора подсвета и наведения (РПН)-9C36M , антенные системы и приемно-передающие устройства которого размещены на мобильном телескопическом подъемно-поворотном устройстве, поднимающем их на высоту более 22 м в течение 2 мин. Александр Григорьевич Лузан, доктор технических наук, лауреат Государственной премии, генерал-лейтенант в отставке, https://www.vesvks.ru/vks/article/tomagavki-byut-po-sirii-poleznye-uroki-16280 2.b http://bastion-karpenko.ru/viking-buk-m3/ антенна бук м3 9C36M Ku -38 db ,ширина луча 1 * 2 градуса , предположительно 7.6-8 ghz , 2500 -3000 элементов при полном заполнении из расчета h/2 ... возможно реализовать среднюю мощность 10 квт при PRF =1000 ,интеграции 20 импульсов реалистичнo получить дальность обнаружения 140 километров для RCS = 1 квадратный метр,35 километров для RCS = 0.004 квадратный метра ########################## 3.повсеместный радар,параллельный прием множеством приемников в АФАР с полностью цифровым формированием лучей Dr. Eli Brookner, Raytheon http://radarconf16.org/tutorial-c3.pdf Digital Beam Forming (DBF): Israel, Thales and Australia AESAs under development have an A/D for every element channel https://apps.dtic.mil/dtic/tr/fulltext/u2/a403877.pdf Systems Aspects of Digital Beam Forming Ubiquitous Radar MERRILL SKOLNIK https://www.raytheon.com/sites/default/files/capabilities/rtnwcm/groups/public/documents/image/amdr-infographic-pdf.pdf 69 RMA ( каждый 61*61*61 сантиметр )provide SPY-1 +25 db capability can see a target of half the size at almost four times the distance 37 RMA (configuration for DDG 51 Flight 3) can see a target half the size at twice the distance of radar on today's navy destroyers Dual Axis multibeam scanning Thales http://tangentlink.com/wp-content/uploads/2014/12/4.-AESA-radars-using-Dual-axis-Multibeam-Scanning.pdf 4. один из возможных сценариев противник как в пункте 1 желает создать перегрузку po входу 96 ракет LRASM на высоте 2-5 метра в секторе 90 градусов равноудаленных от рлс на высотe 22 метра как в пункте 2 повсеместная РЛС 2500 -3000 элементов , средняя мощность передатчика = 10 квт ширина луча 2 градуса пo вертикали,1. градуса пo горизонтали передающие блоки повсеместной РЛС формируют сектор из 90 лучей 90*1 градус *2 градусa энергетический потенциал каждого луча падает в 90 раз,это компенсируется увеличением времени интеграции в 90 раз в каждом луче сектора copy from 2b при PRF =1000 ,интеграции 20 импульсов реалистичнo получить дальность обнаружения 140 километров для RCS = 1 квадратный метр,35 километров для RCS = 0.004 квадратный метра ----------------------------- 0.02 секунды *90 =1.8 сек время интеграции 1800 импульсов, вполне допустимо так как скорость LRASM =300 metr sek ,.для сравнения РЛС 300в4 ПО 9С19М1 «Имбирь-М» концентрированная для перехвата Першинг- 2 ( скорость более 3000 метров в секунду) темп обновления информации – 1 с https://www.vesvks.ru/vks/article/zenitnaya-raketnaya-sistema-s300v4--nadezhnyy-stra-16279 более детальные расчеты в тексте page 7 short -range surveillance https://apps.dtic.mil/dtic/tr/fulltext/u2/a403877.pdf Systems Aspects of Digital Beam Forming Ubiquitous Radar MERRILL SKOLNIK A radar that can detect 1 sqare metr target at 140 nmi with a 4-s revisit time can detect the same size target at 100 nmi (185.2 km) with a 1-s revisit time.(Coherent integration is assumed.) Then there is enough echo signal energy at 10nmi (18.52 km) to detect a 0.0001 m2 target with a 1-s revisit time,assuming that doppler signal processing is used that provides an adequate signal-to-clutter ratio. If the radar requires a 0.1s revisit 10 nmi =18.52 km time to guide a defensive missile to an intercept, the minimum detectable radar cross section is then 0.001 sqare metr .If it were really important to place a 0.0001 m2 cross section target in track with a 0.1s revisit time that could be done at a range of about 5.6 nmi.(10km) ##################################### 5, Российские компоненты СБИС 16-разрядного АЦП с частотой дискретизации 200 МГц https://mri-progress.ru/products/bis-i-sbis/spetsialnye-sbis/sbis-16-razryadnogo-atsp/ Микросхема интегральная 1879ВМ8Я представляет собой универсальную платформу ориентированную на решение задач обработки больших потоков данных в реальном масштабе времени (цифровая обработка сигналов, обработка изображений, навигация, связь, https://www.module.ru/products/1/26-18798

milstar: 2 -Доктрина «На войне, — оборонительный образ действий никогда не должен иметь целью только оборону; он всегда должен иметь единственной целью использование собственных средств с наибольшим коэфициентом полезного действия... Наоборот, воздушная оборона имеет целью только защиту. Она ничуть не повышает коэфициента использования воздушного оружия, а даже уменьшает его до минимума. Таким образом, она представляет собой военно-техническую ошибку» ...Наконец, есть образ, действий, повидимому, соединяющий в себе все трудности: это — оборона в воздухе. «Воздушному оружию нет надобности яростно набрасываться на небольшие объекты, так как перед ним открывается бесчисленное количество крупных и важных объектов... Воздушное оружие будет испытывать затруднения лишь в выборе. Самыми первыми объектами воздушной армии должны быть неподвижные и постоянные объекты, обслуживающие воздушные силы противника: самолетостроительные заводы, крупные склады имущества и т. п. Дуэ (сентябрь 1928 г.). ....ввести в состав дивизиона комплексы Циркон,X-95 --------------------------------------------------------- при потере связи командиру дивизиона предоставлена атаковать неподвижные цели военно-воздушных сил противника аэродромы ,пункты командования ВВС,РЛС противоракетной обороны, базы ВМФ и ВВС в том числе термоядерными боевыми блоками ----------------------- для сравнения доктрина 80 годов предполагала использование ядерного оружия как одного из средств радиоэлектронной борьбы Другой подход (с начала 60-х и до конца 80-х гг.) состоял в том, что составной частью РЭБ считалось поражение РЭС противника любыми средствами, включая даже ядерное поражение, Михаил Дмитриевич Любин - полковник в отставке, бывший старший преподаватель кафедры РЭБ Военной академии Генерального штаба. ----------------- на рисунке в статье Александр Лузан, доктор технических наук, лауреат Государственной премии РФ, генерал-лейтенант прикрытие Искандеров https://vpk-news.ru/articles/36010



полная версия страницы