Форум » Дискуссии » Operazionnie ysiliteli ,ZAP/AZP & (продолжение) » Ответить

Operazionnie ysiliteli ,ZAP/AZP & (продолжение)

milstar: 1941: First (vacuum tube) op-amp An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. ###################################################### It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. ######################################################################### This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that ####################################################################### would not have been possible otherwise.[3] ########################### http://en.wikipedia.org/wiki/Operational_amplifier

Ответов - 300, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All

milstar: https://www.precisionreceivers.com/our-technology/ HDRR technology allows a wideband staring receiver to be built that in sparse signal environments can take a broad snapshot of the entire spectrum with high dynamic range. In dense signal environments a preselector can be switched-in to narrow the bandwidth, improving the spurious performance of the system. Figure 2 is the block diagram of a staring receiver.

milstar: https://aicdesign.org/wp-content/uploads/2018/08/lecture38-150629.pdf

milstar: he corresponding frequency domain representation of the above scenario is shownin Figure 5.4. Note that sampling the analog signal fa at a sampling rate fs actuallyproduces two alias frequency components, one at fs+fa, and the other at fs–fa. Theupper alias, fs+fa, seldom presents a problem, since it lies outside the Nyquistbandwidth. It is the lower alias component, fs–fa, which causes problems when theinput signal exceeds the Nyquist bandwidth, fs/2. https://www.analog.com/media/cn/training-seminars/design-handbooks/3689418379346Section5.pdf


milstar: Figure 9 shows a signal in the second Nyquist zone entered around a carrier frequency, fc, whose lower and upper frequencies are f1 and f2. The antialiasing filter is a bandpass filter. The desired dynamic range is DR, which defines the filter stopband attenuation. ´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´ https://www.analog.com/media/en/training-seminars/tutorials/MT-002.pdf TRANSITION BAND: f2 TO 2fs-f2 RANSITION BAND: f1 TO fs-f1 CORNER FREQUENCIES: f1, f2

milstar: The CR9052 filter’s pass-band ripple is less than ±0.01 dB (0.1%), and the stop-band attenuation exceeds 90 dB (1/32,000). The FIR filter’s transition band has a steep roll-off (graph below), with the stop-band frequency starting a factor of 1.24 above the pass-band frequency. In comparison, the stop-band frequency of an ideal eight-pole Butter-worth filter with the same ripple and at-tenuation starts a factor of 5.81 above its pass-band frequency https://s.campbellsci.com/documents/us/product-brochures/b_cr9052.pdf

milstar: https://www.analog.com/media/en/training-seminars/design-handbooks/Basic-Linear-Design/Chapter8.pdf

milstar: narrow-band application could effectively use an ADC with poor wideband SFDR. By using an antialiasing filter to reject the frequencies in the red shaded areas, any harmonics or spurs that would otherwise dictate poor SFDR are now filtered out of band. https://www.analog.com/media/en/GLP/Understanding-Spurious-Free-Dynamic-Range-in-Wideband-GSPS-ADCs-MS-2660.pdf

milstar: Coherent Seeker Guided AntishipMissile Performance AnalysisJAMES J. GENOVAIntegrated EW Simulation BranchTactical Electronic Warfare Division Naval Research Laboratory https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.928.3912&rep=rep1&type=pdf

milstar: https://www.ab4oj.com/sdr/flex/6700notes.pdf ad9457 Flex 6700 test

milstar: The first one from MIT Lincoln Laboratory (MIT/LL), demonstrated an operating photonic architecture that used time-division-demultiplexing (TDDM) techniques(35). Figure 3-1 shows the schematic layout. The mode-locked laser sampled the input RF electronic signal using an E-O modulator. The optical signal was demultiplexed from 500 MS/s to 65 MS/s using a series of switches to de-interleave the data down to data rates which were processed by a series of “slow” electronic ADCs (65 MS/s) with high resolution (12 bits). MIT/LL demonstrated 505 MS/s BW operation with 51 dB SNR allowing 8 bits of resolution and a SFDR of 61 dB(35). Although the BW of 505 MHz was far from the 5 GHz goal, MIT was successful at demonstrating this photonic ADC working on the HAYSTACK Radar (HAX) platform in Massachusetts. This demonstration was noteworthy in demonstrating that photonics can accurately convert an analog signal to a digital signal. https://apps.dtic.mil/dtic/tr/fulltext/u2/a449267.pdf

milstar: https://www.ab4oj.com/sdr/flex/6700notes.pdf ad9467

milstar: https://www.pentek.com/deliver/deliver.cfm?DI=5&FN=PIPE294.pdf

milstar: The super-heterodyne architecture does allow for the filtering of harmonics and IMD2 products created by the device prior to the ADC. https://www.ti.com/lit/ug/tidu767/tidu767.pdf

milstar: https://www.analog.com/media/en/technical-documentation/data-sheets/ad9166.pdf The DAC core is based on a quad-switch architecture, which is configurable to increase the effective DAC core update rate of up to 12.8 GSPS from a 6.4 GHz DAC sampling clock, with an analog output bandwidth of true dc to 9.0 GHz, typically.

milstar: https://sktbes.com/be_developed.html воронеж разработка аналого цифровых преобразователей https://sktbes.com/okr.html

milstar: Москва. 24 марта. INTERFAX.RU - Вице-премьер Юрий Борисов заявил о возможной блокировке экспорта в РФ из США всей высокотехнологичной продукции. "Администрация Байдена с сентября месяца фактически вводит "кокомовские" списки (Координационный комитет по экспортному контролю (КоКом) - международная организация, в эпоху холодной войны составлявшая перечни "стратегических" товаров и технологий, не подлежащих экспорту в СССР и другие соцстраны - ИФ). То есть в Россию по их желанию будет запрещен экспорт всей высокотехнологичной продукции, какой они посчитают нужным", - сказал Борисов в среду на форуме "Госзаказ". https://www.interfax.ru/russia/757577

milstar: re: Убить беспилотник vpk-news https://www.vpk-news.ru/articles/61569 1. ....Важнейшим условием обеспечения стратегической стабильности обороны государства является гарантированное прикрытие стратегических ядерных сил от ударов сил воздушно-космического нападения противника Вадим Юрьевич ВОЛКОВИЦКИЙ генерал-лейтенант, начальник Главного штаба Военно-воздушных сил, заслуженный военный специалист, кандидат военных наук 2. регулярно идут антидиверсионные учения po прикрытию РВСН что предполагает использование противником мини БПЛА с минимальной отражающей способностью летящих с низкой скоростью над лесным массивом 3. стоимость поражения подобных бпла в данном случае без значения 4. Важнейшая задача -обнаружение ,дискриминация и сопровождение 5. при использовании РЛС воздушного базирования за точку отсчета можно взять хорошо описанную РЛС Ирбис Е самолета Су-35 апертура 900 миллиметров , средняя мощность 5 квт , две лампы челнок 2*2.5 kwt дальность обнаружения в идеальных условиях ( угол места 30 градусов и более , отсутствие снега ,дождя ,мешающих отражений и источников помех поставленных противником ) для цели с ЭПР = 2.5 квадратных метра - 350 километров для цели с ЭПР = 0.01 квадратных метра - 90 километров 6. в указанных выше условиях важнейшей одной из важнейших причин сокращения дальности будут мешающие отражения от неподвижного лесного массива для низкоскоростной цели 7. Именно за передачу данных po радиолокации в нижней полусфере Адольф Толкачев получил свой оперативный псевдоним «Sphere 8. сейчас это все не является секретом ,однако требует использование АФАР и высокой вычислительной мощности встроенной вычислительной системы ( embedded system) 3 терафлопса и более Пространственно-временная адаптивная обработка https://www.radartutorial.eu/20.airborne/ab11.ru.html https://www.eetimes.com/radar-basics-part-4-space-time-adaptive-processing/ https://archive.ll.mit.edu/publications/journal/pdf/vol09_no2/9_2spacetime.pdf https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01197-radar-fpga-or-gpu.pdf 9. при реализации одной вычислительной системы важна потребляемая мощность на один гигафлопс традиционно используются FPGA Altera,Xilinx ( и в разработках российского военно-промышленного комплекса ) , может быть специализированный процессор или заказная интегральная схема 10 . РЛС наземного базирования наиболее уместна концепция повсеместной РЛС ( более передовая чем стандартная АФАР ) Ubiquitous Radar Naval Research laboratory https://www.semanticscholar.org/paper/Systems-Aspects-of-Digital-Beam-Forming-Ubiquitous-Skolnik/2cf76259bfcfeff6cc013278024f050f42892f48?p2df Drone Detection and RCS Measurements with Ubiquitous Radar https://radar2018.org/abstracts/pdf/abstract_74.pdf 11. это потребует использования аналого-цифрового преобразователя в каждом элементе антенны при использовании наиболее уместного для данной цели диапазона L 750-1250 mgz антенны 3 метра*9 метров и полном заполнении из расчета h/2 15 sm 20*60 = 1200 аналого-цифровых преобразователей AD9625 стоимость каждого 1069 $ https://www.analog.com/media/en/technical-documentation/data-sheets/AD9625.pdf 12. конечно будут использоваться и средствa радиоэлектронной борьбы http://www.ntc-reb.ru/index.html http://www.ntc-reb.ru/director.html АО «НТЦ РЭБ» «ПОЛЕ-21Э» http://www.ntc-reb.ru/pole.html Унифицированные модули радиопомех пространственно распределенной системы прикрытия объектов от прицельного применения высокоточного оружия #################### example 1 GHz l-band and 3 GHz s-band rf sources then atmospheric attenuation due to oxygen and water vapor in the atmosphere are on the order of (all data taken from "Radio Wave Propagation", Nat'l Defense Research Committee, Stephen Attwood): ~0.005 dB/km for l-band and ~0.0065 dB/km for s-band, this would mean that over a 400 km distance the l-band set would experience a one-way attenuation of ~2 dB while s-band set would experience a loss of ~2.6 dB... ####################### this attenuation corresponds to a radiated rf energy drop of around 37% for l-band and 45% for s-band over the 400 km distance... not a tremendously huge difference but it still shows that l-band would experience less of a loss due to atmospheric attenuation as compared to s-band... in inclement weather (ie. rain) two effects have to be considered, attenuation (similar to that due to atmospheric effects), and backscatter (ie. clutter) due to raindrops scattering the rf energy... for attenuation due to rainfall, the actual losses also depend on the rainfall rate (with it's attendant effect on raindrop size distribution), hence taking for example 4 mm/hr rainfall a 1 GHz l-band set would experience 1.08 x 10^-4 dB/km attenuation (yes that is 10 to the minus 4 power, it's that small), while a 3 GHz s-band set would experience 1.19 x 10^-3 dB/km attenuation (note that the total attenuation due to rainfall would be only over the distance the rf energy radiated into in which the rainfall is present)... here the diff is a factor of around 11 times greater attenuation per km for s-band than for l-band... ##################################################################### the second effect, that of rainfall backscatter is even more pronounced as rain clutter rf return is inversely proportional to the fourth power of the wavelength (ref: "Antennas and Radiowave Propagation", Robert Collin) hence the 3 GHz s-band set would experience approx 81 times greater clutter return strength due to rain than the 1 GHz l-band set... ################################################################ the greater clutter return would mean it would have to expend more processing to try and extract valid target return signals from the background clutter (ie. decorrelate the clutter, etc)... note we are not including use of polarization here to mitigate rain backscatter effects (specifically circular polarization)...

milstar: Ka-band ADCs and DACs offer the potential to extend software-defined radio to software-defined microwave for satellite communication https://www.ednasia.com/ka-band-adcs-and-dacs-enhance-satellite-communication/ o support the move to Ka-band, Teledyne e2v started research in 2019 investigating the potential of a novel K-band (18 to 27 GHz) ADC, realised using a 24 GHz front-end, track and hold amplifier and a quad ADC interleaving the four digitiser cores. A prototype was developed and testing revealed that optimising INL calibration for higher frequencies, as opposed to baseband operation, as well as minimising the offset mismatch between individual ADCs, could maximise dynamic K-band performance (Figure 4). Fmax for 90 nm SiGe heterojunction bipolar transistors (HBTs) is currently 600 GHz. In 2020, a second prototype was developed combining two CMOS, interleaved, quad ADCs and a SiGe 30 GHz track and hold amplifier. Flip-chip die with lower parasitics at higher frequencies were mounted onto a low-dielectric constant organic substrate and placed in a compact 33×19 mm SiP, as shown in Figure 5. Improved performance was measured at K-band. Following the research carried out in 2019 and 2020, Teledyne e2v plans to release samples of the first Ka-band ADC for space applications in the second half on 2021. The SiP product will include a 40 GHz, front-end, track and hold amplifier to allow direct sampling of Ka-band carriers. First samples of the Ka-band ADC and DAC will become available this year with procurement and qualification options, as well as radiation-hardness data, to be released shortly after. To offer the space industry further integration and on-board processing benefits, SiPs will also be offered combining microwave ADCs and DACs with qualified FPGAs in a compact form factor (Figure 8). The first product will baseline Xilinx’s XQRKU060 device as illustrated below, with additional space-grade FPGAs planned as part of the overall roadmap.

milstar: Advanced wide band sampling solution for direct digitization of the K-band – extending the boundaries of RF possibility. https://edn.com/wp-content/uploads/Wide-band-sampling-solution-White-Paper-Update.pdf

milstar: Typically, a first pass of the spectrum segment is done at high bandwidth to pull in as much data as possible to obtain areas of interest to analyze, after which a higher-resolution, lower-bandwidth solution is leveraged to focus on specific targets. As warfighters see a far greater range of the spectrum, more lives are saved and mission success probability is increased because of faster, more accurate identification of threats and improved response options. https://militaryembedded.com/radar-ew/signal-processing/sige-based-warfare-processing-performance .Ka-band ADCs and DACs offer the potential to extend software-defined radio to software-defined microwave for satellite communication and EW 1.В России есть 0.25 SiGe можно реализовать https://link.springer.com/article/10.1007/s10470-009-9422-7 ENOB of 7.2-bits at an input frequency of 3.125 GHz and a sampling rate of 12.5 GS/s with a FOM of 12.9 pJ per conversion. Both DNL and INL are within 0.5 and 1 LSB, respectively. The converter occupies 10 mm2 and dissipates 14 W from a 3.3 V supply. ################# 2..китайская разработка ,0.18 - может помогут России с процессом ? https://www.jstage.jst.go.jp/article/elex/16/3/16_16.20181079/_pdf In this paper, a time-interleaved 10-GS/s 8-bit analog-to-digitalconverter (ADC) fabricated in 0.18 μm SiGe BiCMOS technology has beendemonstrated ######################## 3. SiGe-based ADCs/DACs double COTS Electronic Warfare processing performance https://militaryembedded.com/radar-ew/signal-processing/sige-based-warfare-processing-performance ######################### 4. Ka-band ADCs and DACs offer the potential to extend software-defined radio to software-defined microwave for satellite communication https://edn.com/wp-content/uploads/Wide-band-sampling-solution-White-Paper-Update.pdf https://www.ednasia.com/ka-band-adcs-and-dacs-enhance-satellite-communication/ o support the move to Ka-band, Teledyne e2v started research in 2019 investigating the potential of a novel K-band (18 to 27 GHz) ADC, realised using a 24 GHz front-end, track and hold amplifier and a quad ADC interleaving the four digitiser cores. A prototype was developed and testing revealed that optimising INL calibration for higher frequencies, as opposed to baseband operation, as well as minimising the offset mismatch between individual ADCs, could maximise dynamic K-band performance (Figure 4). Fmax for 90 nm SiGe heterojunction bipolar transistors (HBTs) is currently 600 GHz. In 2020, a second prototype was developed combining two CMOS, interleaved, quad ADCs and a SiGe 30 GHz track and hold amplifier. Flip-chip die with lower parasitics at higher frequencies were mounted onto a low-dielectric constant organic substrate and placed in a compact 33×19 mm SiP, as shown in Figure 5. Improved performance was measured at K-band. Following the research carried out in 2019 and 2020, Teledyne e2v plans to release samples of the first Ka-band ADC for space applications in the second half on 2021. The SiP product will include a 40 GHz, front-end, track and hold amplifier to allow direct sampling of Ka-band carriers. First samples of the Ka-band ADC and DAC will become available this year with procurement and qualification options, as well as radiation-hardness data, to be released shortly after. To offer the space industry further integration and on-board processing benefits, SiPs will also be offered combining microwave ADCs and DACs with qualified FPGAs in a compact form factor (Figure 8). The first product will baseline Xilinx’s XQRKU060 device as illustrated below, with additional space-grade FPGAs planned as part of the overall roadmap. https://semiconductors.teledyneimaging.com/en/products/data-converters/analog-to-digital/



полная версия страницы