Форум » Дискуссии » Operazionnie ysiliteli ,ZAP/AZP & (продолжение) » Ответить

Operazionnie ysiliteli ,ZAP/AZP & (продолжение)

milstar: 1941: First (vacuum tube) op-amp An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. ###################################################### It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. ######################################################################### This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that ####################################################################### would not have been possible otherwise.[3] ########################### http://en.wikipedia.org/wiki/Operational_amplifier

Ответов - 300, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All

milstar: http://lea.hamradio.si/~s53mv/archive/a074.pdf

milstar: https://www3.mpifr-bonn.mpg.de/staff/bklein/FFTS/URSI-FFTS.pdf

milstar: Phase modulation techniques are subdivided into two categories: residual carrier and suppressed carrier. The distinction lies in the presence (residual) or absence (suppressed) of an RF carrier component. Traditionally, space agencies employed the former. However, as data rates have increased and Power Flux Density (PFD) became a problem for Earth orbiting spacecraft, many mission designers began using suppressed carrier modulation. https://deepspace.jpl.nasa.gov/files/phase3.pdf


milstar: https://docplayer.ru/76434324-Drayvery-sverhskorostnyh-acp-na-osnove-svch-mis-shirokopolosnyh-usiliteley.html В статье приводится краткий анализ основных параметров и типов драйверов сверхскоростных ана - лого-цифровых преобразователей (АЦП). Приводится информация о характеристиках серийных АЦП с частотой преобразования до 5,4 ГГц.

milstar: http://www.seas.ucla.edu/brweb/teaching/215D_S2012/fold2.pdf 15Advantages of FoldingzMantains the “one-step” nature of flash conversion.zNo need for interstage DAC, subtractor, residue ampzExtracts information from zero crossingsÆno need for “linear” processingzCompact and efficient 19Folding IssueszFrequency Multiplication at Folding NodeszReduced BW at Folding NodeszDiff Pair Gm MismatchzTail Current MismatchzTrade-Off Between Linearity and Gain

milstar: https://www.ti.com/lit/an/slaa617/slaa617.pdf

milstar: Folding Interpolating ADC 12 bit 10.4GSPS (2*5.2 ) https://www.ti.com/product/ADC12DJ2700 https://www.ti.com/product/ADC12DJ5200RF https://www.ti.com/lit/ds/symlink/adc12dj5200rf.pdf

milstar: For systems that require an arbitrarily narrow bandwidth, the zero-IF architecture is almost always the right solution. However, in applications where arbitrarily wide bandwidth is required, as in instrumentation, radar, and wideband communications, direct RF sampling has long been the goal. In these applications, it is understood that some of the cost and power efficiency afforded by other architectures is traded off for wider system bandwidth. Therefore, when an RF sampling architecture is chosen, it is designed to cover the widest possible bandwidth to ensure overall radio performance. New RF ADCs like the AD9213 are designed to provide ultrafast sample rates beyond 10 GSPS and sample bandwidths more than 8 GHz, enabling direct RF sampling for many applications. Most radio services are allocated less than 75 MHz per band. With a 10 GSPS ADC, the effective utilization of spectrum is less than 2% of the Nyquist bandwidth. In several studies, the power efficiency of direct RF sampling is about ½ that of a zero-IF architecture. To improve overall efficiency in radio applications, RF sampling offers the possibility of sampling more than one band at a time. https://www.analog.com/en/technical-articles/wideband-receiver-for-5g-instrumentation-and-adef.html

milstar: https://sktbes.com/okr.html «Разработка радиационно-стойких КМОП 12 - разрядного сверхбыстродействующего с АЦП с частотой преобразования до 1 ГГц и напряжением питания 1,8 В».

milstar: https://mri-progress.ru/products/bis-i-sbis/spetsialnye-sbis/sbis-16-razryadnogo-atsp/ СБИС К5111НВ015 СБИС 16-разрядного АЦП с частотой дискретизации 200 МГц СБИС 16-разрядного АЦП конвейерного типа с частотой дискретизации 200 МГц изготовлена по КМОП 90-нм технологии и предназначена для аналого-цифрового преобразования диффе- ренциальных аналоговых сигналов. В микросхеме реализован алгоритм встроенной калибров- ки передаточной характеристики. Функциональный аналог ADS5485 фирмы Texas Instruments.

milstar: https://mri-progress.ru/products/catalog/#page/32

milstar: https://www.ridgetopgroup.com/wp-content/uploads/2015/06/PB_RGADC-12B-2G-RH.pdf 12 bit 2 gsps SiGE 0.13 micron (4 interleaved)

milstar: a Tektronix TADF-4300 module featuring a SiGe-based 12.5 GSps 8-bit ADC the new SiGe-based technology will provide an ideal platform for radar, SIGINT, and EW applications. These ADCs, for example, deliver the best speed and Effective Number of Bits (ENOB) currently available from a commercial device. An additional advantage of SiGe-based devices is their low latency, an important feature for bandwidth-sensitive EW applications. . The new SiGe-based generation of ADCs is delivering the next big performance leap, doubling bandwidth speeds up to 12 GSps. For EW applications, the benefit is straightforward: The higher sample rates and associated bandwidth ensure better spectrum coverage and improved Probability Of Intercept (POI) for signals of interest. In addition, the performance of these 8-bit parts surpasses off-the-shelf 10-bit ADCs in terms of Spurious Free Dynamic Range (SFDR). SiGe-based ADCs/DACs double COTS Electronic Warfare processing performance David Jedynak Curtiss-Wright Defense Solutions New ADC and DAC technology based on Silicon-Germanium (SiGe) promises unprecedented levels of functionality and capability for demanding signal processing applications. These new devices, which bring the advantages of SiGe to rugged deployed military systems for the first time, can deliver 2x the performance of currently available ADC/DAC devices, establishing a new class of processing performance for defense and aerospace applications. When deployed on open architecture platforms utilizing OpenVPX COTS boards with latest-generation FPGAs, the new SiGe-based technology will provide an ideal platform for radar, SIGINT, and EW applications. New levels of performance These types of EW applications require a balance between speed and resolution. Compared to earlier designs, these new SiGe-based ADCs/DACs, supplied by vendors such as Tektronix, feature higher sample rate performance. They leverage high-performance data conversion techniques to optimize device performance characteristics such as calibration, power, and signal/noise ratios. These ADCs, for example, deliver the best speed and Effective Number of Bits (ENOB) currently available from a commercial device. An additional advantage of SiGe-based devices is their low latency, an important feature for bandwidth-sensitive EW applications. Until recently, COTS ADC devices on the market have topped out at 3 GSps at 8 bits of resolution. In the past few years though, we’ve begun to see devices that can perform at up to 6 GSps at 8 bits. The new SiGe-based generation of ADCs is delivering the next big performance leap, doubling bandwidth speeds up to 12 GSps. For EW applications, the benefit is straightforward: The higher sample rates and associated bandwidth ensure better spectrum coverage and improved Probability Of Intercept (POI) for signals of interest. In addition, the performance of these 8-bit parts surpasses off-the-shelf 10-bit ADCs in terms of Spurious Free Dynamic Range (SFDR). SFDR is a measure of the performance of the ADC, and higher SFDR ensures improved identification of signals of interest in a crowded spectral environment. Typically, a first pass of the spectrum segment is done at high bandwidth to pull in as much data as possible to obtain areas of interest to analyze, after which a higher-resolution, lower-bandwidth solution is leveraged to focus on specific targets. As warfighters see a far greater range of the spectrum, more lives are saved and mission success probability is increased because of faster, more accurate identification of threats and improved response options. With this new generation of ADCs and DACs, EW system designers get increased bandwidth with sufficient resolution. It’s a win-win with high-quality signal identification and improved immunity from noise that supports real-time analysis of larger amounts of data. While it’s possible to obtain ADCs that operate at 14- to 16-bit resolution rates, these devices typically sample in the hundreds of Msample range, far below the 12 GSps rates at 8 bits now reachable. SiGe-based ADCs/DACs also deliver lower power performance (as measured in Watt/GHz). In addition to their higher speed and lower power, these ADCs/DACs also offer reduced leakage current and less sensitivity to temperature fluctuation, which becomes more critical in EW electronics as process architectures shrink. Faster I/O devices meld with OpenVPX and FPGAs These faster ADCs and DACs can be readily built into rugged open architecture OpenVPX-based EW systems using FPGAs to perform high-speed algorithm processing in the digital domain; this paradigm minimizes the need for performing downconversions or other filtering stages that would typically be handled in an external analog tuner logic, slowing down performance and requiring additional on-board components that use valuable board real estate and add unwanted heat. The new ADC/DAC components can be deployed on OpenVPX hosts so that the system designer has the flexibility to swap out different front-end configurations as required while maintaining a common back-end and software interface to the FPGA to address different types of applications. An example of an OpenVPX board that delivers the latest generation of devices is Curtiss-Wright’s rugged CHAMP-WB-DRFM 6U card set, combining a Tektronix TADF-4300 module featuring a SiGe-based 12.5 GSps 8-bit ADC and a 12 GSps 10-bit DAC (Figure 1), on a Xilinx Virtex-7 FPGA-based 6U VPX card, the CHAMP-WB http://mil-embedded.com/articles/sige-based-warfare-processing-performance/

milstar: High Performance Data Converters for Medical Imaging Systems by Anton Patyuchenko https://www.analog.com/en/analog-dialogue/articles/high-performance-data-converters-for-medical-imaging-systems.html# Digital Radiography Computed Tomography Positron Emission Tomography Magnetic Resonance Imaging Ultrasonography Here is a list of products ideal for the various medical imaging modalities mentioned in this article. ADAS1256: This highly integrated analog front end incorporates 256 channels with low noise integrators, low-pass filters, and correlated double samplers that are multiplexed into a high speed, 16-bit ADC. It is a complete charge-to-digital conversion solution designed for DR applications that can be directly mounted on a digital X-ray panel. For discrete DR systems, the 18-bit PulSAR® ADC AD7960 offers 99 dB of SNR and a 5 MSPS sampling rate to deliver unmatched performance to meet requirements for the highest dynamic range both in noise and in linearity. The 16-bit, dual-channel AD9269 and 14-bit, 16-channel AD9249 pipeline ADCs offer sampling rates of up to 80 MSPS and 65 MSPS, respectively, to enable high speed fluoroscopy systems. ADAS1135 and ADAS1134: These highly integrated 256- and 128-channel data acquisition systems are comprised of low noise, low power, low input current integrators, simultaneous sample-and-hold devices, and two high speed ADCs with a configurable sampling rate and resolution of up to 24 bits with excellent linearity performance to maximize image quality for CT applications. AD9228, AD9637, AD9219, and AD9212: These 12- and 10-bit multichannel ADCs with sampling rates from 40 MSPS to 80 MSPS are optimized for outstanding dynamic performance and low power to meet PET requirements. AD9656: This 16-bit quad pipeline ADC offers a conversion rate up to 125 MSPS and is optimized for outstanding dynamic and low power performance for conventional and direct digital conversion MRI system architectures. AD9671: This 8-channel integrated receiver front end is designed for low cost and low power medical ultrasound applications featuring a 14-bit ADC with up to 125 MSPS. Each channel is optimized for a high dynamic performance of 160 dBFS/√Hz and low power of 62.5 mW in continuous wave mode for applications where a small package size is critical.

milstar: Производительность современной мини-фабрики составляет не десятки и сотни тысяч пластин в месяц, как на фабрике массового производства узкой номенклатуры продукции, а примерно 500 пластин ежемесячно. ############################################# Потребности российского рынка микроэлектроники могут обеспечить, по некоторым оценкам, три-четыре мини-фабрики. ############################################################# При этом их продукция будет конкурентоспособна на мировом рынке контрактного производства. Кроме того, при соблюдении некоторых условий изделия будут востребованы в сфере космического приборостроения, авионики, атомной промышленности и в других областях, где применяются электронные устройства высокой надежности. Еще одно направление – развитие универсальных мини-фабрик как современной производственной базы для нанотехнологических центров коллективного пользования, где наряду с инновацион-ными разработками можно проводить обучение и переподготовку высококлассных научных и производственных кадров. При создании современной мини-фабрики в России следует принимать во внимание, что производство изделий малой серийности и широкой номенклатуры должно быть очень гибким, с низкими эксплуатацион-ными расходами. Для этого необходимо выполнить ряд условий. Использование наноимпринтной литографии вместо традиционной фотолитографии в глубоком ультрафиолете (EUV) позволит существенно (в разы) снизить затраты на оборудование и эксплуатационные затраты, повысить рентабельность проекта. Кроме того, модернизация существующих в России межотраслевых центров изготовления фотошаблонов даст возможность оперативно наладить производство шаблонов для наноимпринтной литографии. Технологический маршрут кристального производства или производства СБИС на общей пластине с использованием наноимпринтной литографии позволяет обеспечить размеры топологии 45 нм и ниже с достаточно высоким коэффициентом выхода годных (табл.3). В лабораторных условиях минимальный размер элемента, полученного методом наноимпринтной литографии, уже сейчас достигает 7–8 нм и менее[2]. ###################################################################################### http://www.electronics.ru/journal/article/4973 На отечественных мини-фабриках имеет смысл размещать оборудование, ориентированное на обработку 200-мм пластин, поскольку оно достаточно дешевое и компактное. Следует учитывать также, что для снижения затрат по созданию таких производств, важен сам принцип формирования технологических кластеров: при мелкосерийном и многономенклатурном производстве на первый план выходит не производительность, а оптимальный состав оборудования. Что касается стоимости современной мини-фабрики, то затраты на ее создание под ключ, включая чистые комнаты и инженерные системы обеспечения энергоносителями, составляют, в зависимости от состава и степени универсальности, от 350 до 500 млн. долл. ######################################################################## Срок реализации проекта "с нуля" – 30–36 месяцев, не больше, иначе проект морально устареет до того, как начнет приносить отдачу. Еще один важный (если не определяющий) фактор в пользу реализации подобных проек-тов – уровень квалификации российских специалистов в данной области, хотя для отладки технологии имеет смысл привлекать иностранных специалистов с опытом работы на производствах такого уровня. http://www.electronics.ru/files/article_pdf/4/article_4973_712.pdf

milstar: http://www.sovel.org/spravochnik1/manufacturers/

milstar: Техпроцесс 28 нм на «Микроне» готовы были разработать самостоятельно, не покупая зарубежное оборудование и лицензии, которые для подобной технологии оцениваются в сумму до 7 млрд долларов. Да их, скорее всего, и не удастся купить, отзывались эксперты — технологии такого уровня запрещены к продаже в ряд стран, включая Россию, по политическим причинам. https://www.zelenograd.ru/hitech/v-zelenograde-namereny-postroit-fabriku-chipov-28-nanometrov/ 500 пластин в месяц — такая производительность будущей фабрики 28 нм озвучивалась в презентации НИИМЭ. Для сравнения, плановая производительность линии «Ангстрема-Т», которую предлагали демонтировать ради 28 нм — до 15 тысяч пластин в месяц, недавно заключены контракты о поставках в Китай, которые загрузят её загрузили более чем наполовину. Отечественный рынок для чипов 28 нм тоже весьма невелик. Согласно опубликованному в октябре отчёту J’son & Partners «Анализ потенциала импортозамещения в микроэлектронике: Интегральные схемы 32 нм», доля спроса отечественных потребителей на чипы 28 нм не превышает 3%, и его почти полностью закрывают поставки американских чипов (произведённых, в основном, в ЮВА). «Задачи по импортозамещению должны быть существенно более амбициозны, особенно с учетом продолжающегося быстрого прогресса технологий производства интегральных схем» , — резюмируют составители отчёта.

milstar: An example of an OpenVPX board that delivers the latest generation of devices is Curtiss-Wright’s rugged CHAMP-WB-DRFM 6U card set, combining a Tektronix TADF-4300 module featuring a SiGe-based 12.5 GSps 8-bit ADC and a 12 GSps 10-bit DAC (Figure 1), on a Xilinx Virtex-7 FPGA-based 6U VPX card, the CHAMP-WB. This modular design approach actually provides designers with two levels of modularity or reconfigurability: The first level is the ability to swap out different mezzanines as needed, and the second level is the inherent reconfigurability of the FPGA itself. This serves to benefit today’s cutting-edge EW applications. http://mil-embedded.com/articles/sige-based-warfare-processing-performance/

milstar: https://www.armms.org/media/uploads/p09---andrew-glascott-jones---direct-conversion-to.pdf

milstar: 16 bit 0.25 mkm SiGe ADC high speed ,high SFDR ,SNR https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5604661&tag=1



полная версия страницы