Форум » Дискуссии » Уран,Плутоний,Золото,Платина,Бериллий,Три́тий ... » Ответить

Уран,Плутоний,Золото,Платина,Бериллий,Три́тий ...

milstar: http://www.thebulliondesk.com/ Деньги любят тишину… Соглашение о продаже нашего оружейного урана Соединенным Штатам продолжает действовать Николай Леонов Генерал-лейтенант КГБ, начальник Аналитического управления 09.03.2011 История эта - тщательно замалчиваемая. Кто-то из «новых русских» часто произносил известную фразу: «Деньги любят тишину, а большие деньги – мертвую тишину». Под эти «критерии» подпадает операция с продажей российского оружейного урана и плутония Соединенным Штатам Америки, начатая в 1993-м. Уже в последние годы существования Советского Союза Михаил Горбачев был постоянно озабочен поиском возможностей потрафить Западу, заручиться благорасположением Соединенных Штатов. В этом ряду - его соглашение от 7 декабря 1987-го с Вашингтоном о ликвидации ракет средней и меньшей дальности. В соответствии с текстом документа СССР и США обязывались в течение трех лет уничтожить все имевшиеся у них баллистические и крылатые ракеты с дальностью стрельбы от 500 до 1000 километров - так называемые «ракеты меньшей дальности» и с дальностью стрельбы от 1000 до 5500 километров - так называемые «ракеты средней дальности». На первый взгляд, соглашение выглядело разумным: избыточный арсенал накопленных ракет и атомных головок был слишком велик. Но М. Горбачев и Э. Шеварднадзе не учли того обстоятельства, что очень многие страны из числа соседей СССР - КНР, КНДР, Индия, Пакистан, Иран, Израиль - начинали к тому времени активно развивать свое ракетостроение, создавая именно носители «меньшей» и «средней» дальности. Их арсенал не представлял угрозы для США, но советская территория оказывалась в пределах досягаемости. Все время играя в «поддавки» с США, М. Горбачев, не спросив никого из своих военных советников, согласился уничтожить и самый современный по тем временам советский ракетный комплекс «Ока», который даже не входил в категорию ракет «меньшей дальности» - он был типичным тактическим оружием, имел дальность стрельбы меньше 500 километров. Но для США «Ока» была как камушек в сапоге солдата на марше. Эта самоходная установка могла использовать и обычные и ядерные боеприпасы, она действовала на нервы воякам из армий НАТО, и те уговорили Генерального секретаря ЦК КПСС согласиться на ее уничтожение. Чего никогда не простили ему наши военные. Итак, к началу 90-х годов со всех уничтожаемых ракет были сняты ядерные боеголовки, которые складировали в хранилищах, а сами носители разрушили. А тут подоспел развал Советского Союза. Часть ракетно-ядерных комплексов оказалась на территориях новых государств - Украины, Белоруссии и Казахстана, что вызвало глубокую озабоченность в США, для которых увеличение числа ядерных держав в мире всегда было и остается неприемлемым. Единственное исключение они охотно делают только для Израиля, как известно. Украину, Белоруссию и Казахстан под прямой угрозой заблокировать их прием в ООН западные страны заставили безоговорочно сдать оказавшееся под их контролем ракетно-ядерное оружие России, которая брала на себя обязательство обеспечить его безопасное хранение. В 1992-м был подписан так называемый Лиссабонский протокол, по которому Украина, Белоруссия и Казахстан были объявлены странами, не имеющими ядерного оружия. В результате всех этих событий к 1993-му на военных складах Российской Федерации скопилось около 500 тонн оружейного урана, снятого со всех видов уничтоженных ракетных комплексов ------------------------------------------------------------- . Для сравнения: в атомной бомбе, сброшенной на Хиросиму, было всего 10 кг оружейного урана. К этому времени российское правительство, постоянно испытывавшее катастрофическую нехватку средств для пополнения госбюджета, получило вкрадчивое предложение от США, выразивших готовность скупить весь этот урановый «излишек» за 12 миллиардов долларов. Борису Ельцину и Виктору Черномырдину идея показалась весьма привлекательной и даже спасительной. В то время российское правительство было похоже на алкоголика, испытывавшего жестокий синдром похмелья и готового за стакан водки отдать что угодно, не то, что урановый «излишек». Переговоры шли споро и в полном секрете. С американской стороны их вел вице-президент Альберт Гор, с российской - премьер-министр Виктор Черномырдин, поэтому достигнутая договоренность получила их имена. Соглашение специально «загнали» на столь высокий уровень - чтобы не выносить текст соглашения на ратификацию законодательными органами двух стран. Дескать, речь - о простом межправительственном соглашении по экономическим вопросам, не затрагивающем проблемы безопасности государств. Европейские страны - Франция, Германия, Великобритания - узнавшие о ведущихся переговорах, выразили горячее желание принять в них участие и заполучить часть российского урана, но США вежливо - и жестко – пресекли их претензии в зародыше. Соглашение было подписано 18 февраля 1993-го. Оно предусматривало продажу в течение предстоявших 20 лет российского оружейного урана в количестве 500 тонн Соединенным Штатам Америки для использования его в атомной энергетике. Общая стоимость уникального товара была определена в 11,9 миллиарда долларов. Оружейный уран со степенью обогащения 90 процентов по изотопу U-235 должен был быть разбавлен на российских предприятиях до 4,4 процентной концентрации, что соответствует уровню ТВЭЛов - тепловыделяющих элементов, используемых в АЭС. В Соединенных Штатах на атомных электростанциях насчитывается 109 реакторов, которые, таким образом, получали запас энергетического сырья на много десятилетий вперед. --------------------- Первые партии низкообогащенного урана были отгружены из России в 1995-м. В США уплыли 186 тонн топливного урана, для изготовления которых были переработаны 244 боеголовки общим весом в 6 тонн оружейного урана. Дальше конвейер доставки в США ядерного топлива заработал с нарастающим темпом. К исходу 2008-го - последние известные мне данные - были уже проданы 352 тонны - из оговоренных 500 - оружейного урана. Это количество соответствует 14 тысячам демонтированных боеголовок. --------------------------------------------------------------------------------- Официальные ведомства России максимально засекретили всю информацию, связанную с этой сделкой, но сведения о ней все же просочились в 1997-м в прессу. Потом к этой теме обращались депутаты Государственной Думы Игорь Родионов, Виктор Черепков и другие: они запрашивали Федеральное агентство по атомной энергии, Министерство обороны и главу государства с просьбой дать полную информацию по этому соглашению, но не получили удовлетворявших их ответов. Тем временем в американских изданиях промелькнули сообщения о том, что Россия сильно продешевила при совершении сделки, ибо стоимость 500 тонн урана значительно выше цены, которая была определена соглашением. Намекали, что В. Черномырдин получил очень крупный «откат» за эту сделку. Джордж Буш-старший публично назвал В. Черномырдина «коррупционером». Французская газета «Монд» также отметилась подобными публикациями. Виктор Степанович грозился подать на них в суд за диффамацию, но отказался от таких намерений. Почему – неизвестно. Я дважды публично выступал по вопросам этой сделки. Первый раз - в 2005-м на Всемирном Русском Народном соборе, второй – в бытность депутатом Госдумы в 2006-м году в Комитете по безопасности. Выступление было приурочено к выполнению Россией половины своих обязательств по этой сделке: в США было отгружено 250 тонн оружейного урана. Я выступил с предложением выйти из этой коммерческой сделки, поскольку в 2006-м Россия уже не испытывала никаких финансовых трудностей, и остающиеся 250 тонн оружейного урана были для безопасности государства несравненно ценнее 6 миллиардов долларов. ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Меня не поддержали, и выполнение наших обязательств продолжалось. Нынешний руководитель Росатома Сергей Кириенко открыто заявил недавно, что Россия безусловно выполнит к 2013-му все свои обязательства по соглашению и с гордостью добавил: «Мы уничтожаем гораздо больше высокообогащенного урана, чем США и все другие страны вместе взятые». ------------------------------------------------------------------------------------------------- S.Kirienko -grazdanin IzraIya,ego nastojaschaja familiya Izraitel ######################################### Rossii neobxodimo 1.Razwernut RSMD s yabch protiv Izrailya . 2. Sposbstwowat sozdaniju MBR/ICBM s yabch w kazdoj strane ,wrzdebnoj bloku USA/NATO/Izrail Сейчас «придушенная» дискуссия свелась к вопросу о цене проданного урана. Самые отъявленные критики соглашения оценивают проданный уран в 8 триллионов долларов. Наиболее уравновешенные защитники позиции правительства сходятся на 50 миллиардах долларов - что в любом случае в 4 с лишним раза больше, чем реально полученная Россией сумма. Делались попытки определить стоимость проданного урана, сопоставив его энергетический потенциал с энергетическим потенциалом нефти. Нехитрые операции на калькуляторе показали: 1 тонна оружейного урана по тепловыделяющей способности равна 1 миллиону 350 тоннам нефти. Умножим эту последнюю цифру на 500 и получим 675 миллионов тонн нефти. Если принять среднюю цену нефти за 80 долларов за баррель, то окажется, что стоимость нашего урана, проданного в США, составила бы 405 миллиардов долларов, или в 35 раз больше, чем мы в реальности получили. Эти цифры наиболее близки к реальности. Но ведь не только деньгами – пусть даже очень большими - измеряется ценность оружейного урана. Россия уже никогда не сможет наработать такое его количество. Мы потеряли прежние месторождения урановой руды, оставшиеся в Казахстане, Узбекистане и на территории бывшей ГДР. В России сохранилась только одна шахта - в Иркутской области. Нет теперь и прежних обогатительных комбинатов. Когда руководителей нашей атомной промышленности упрекают в том, что мы продали за бесценок наше энергетическое будущее, они отмахиваются, уверяя, что у нас и без этого достаточно запасов расщепляющихся материалов. Но оппоненты не унимаются, настаивая на том, что, дескать, запасы оружейного урана у нас и в США были примерно одинаковыми, между 500 и 600 тоннами. Из этого делается вывод, что мы продали Соединенным Штатам практически большую часть нашего уранового достояния, чем нанесли непоправимый урон безопасности страны. Ссылаясь на данные американской прессы, оппоненты правительства утверждают, что США оценили свои запасы урана и плутония в 4 триллиона долларов, а скупили наши запасы за смехотворную сумму в 12 миллиардов. Внести ясность в эту запутанную ситуацию могли бы компетентные ведомства России, но они хранят гробовое молчание. С какой бы стороны мы не рассматривали эту сделку, придется признать, что она была крайне невыгодной для национальных интересов России. Соединенные Штаты, которые даже во сне мечтают об «атомной стерилизации» России, получили огромное преимущество в энергетической обеспеченности на длительный срок. Они мечтают о наступлении таких времен, когда у России будут вырваны «атомные зубы» и она утратит способность адекватно ответить на смертельный укус своего потенциального противника. Им долго ждать? Специально для Столетия http://www.stoletie.ru/rossiya_i_mir/dengi_lubat_tishinu_2011-03-09.htm http://com-stol.ru/?p=3502 http://www.proatom.ru/modules.php?name=News&file=print&sid=2870

Ответов - 267, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 All

milstar: Interestingly enough, the United States government conducted a controlled experiment called the Nth Country Experiment to see how much effort was actually required to develop a viable fission weapon design starting from nothing. In this experiment, which ended on 10 April 1967, three newly graduated physics students were given the task of developing a detailed weapon design using only public domain information. The project reached a successful conclusion, that is, they did develop a viable design (detailed in the classified report UCRL-50248) after expending only three man-years of effort over two and a half calendar years. In the years since, much more information has entered the public domain so that the level of effort required has obviously dropped further. http://nuclearweaponarchive.org/Nwfaq/Nfaq4.html Preparing an actual weapon design (without extensive experimentation with real explosive and nuclear materials) requires significant amounts of numeric modelling of hydrodynamic and neutron transport effects. I do not discuss these computational techniques at all, although this is mainly to avoid excessive technical detail since the methods themselves are also not classified and are readily available in standard texts.

milstar: 4.1.6 Methods of Core Assembly The principal problem in fission weapon design is how to rapidly assemble or compress the fissile material from a subcritical state to a supercritical one. Methods of doing this can be classified in two ways: Whether it is subsonic or supersonic; and Number of geometric axes along which compression occurs. Subsonic assembly means that shock waves are not involved. Assembly is performed by adiabatic compression, or by continuous acceleration. As a practical matter, only one subsonic assembly scheme needs to be considered: gun assembly. Supersonic assembly means that shock waves are involved. Shock waves cause instantaneous acceleration, and naturally arise whenever the very large forces required for extremely rapid assembly occur. The are thus the natural tools to use for assembly. Shocks are normally created by using high explosives, or by collisions between high velocity bodies (which have in turn been accelerated by high explosive shocks). The term "implosion" is generally synonymous with supersonic assembly. Most fission weapons have been designed with assembly schemes of this type. Assembly may be performed by compressing the core along one, two, or three axes. One-D compression is used in guns, and plane shock wave compression schemes. Two and three-D compression are known as cylindrical implosion and spherical implosion respectively. Plane shock wave assembly might logically be called "linear Implosion", but this term has been usurped (in the US at any rate) by a variant on cylindrical implosion (see below). The basic principles involved with these approaches are discussed in detail in Section 3.7, Principles of Implosion. To the approaches just mentioned, we might add more some difficult to classify hybrid schemes such as: "pseudo-spherical implosion", where the mass is compressed into a roughly spherical form by convergent shock waves of more complex form; and "linear implosion" where a compressive shock wave travels along a cylindrical body (or other axially symmetric form - like an ellipsoid), successively squeezing it from one end to the other (or from both ends towards the middle). Schemes of this sort may be used where high efficiency is not called for, and difficult design constraints are involved, such as severe size or mass limitations. Hybrid combinations of gun and implosion are also possible - firing a bullet into an assembly that is also compressed. The number of axes of assembly naturally affect the overall shape of the bomb. One-D assembly methods naturally tend to produce long, thin weapon designs; 2-D methods lead to disk-shaped or short cylindrical systems; and 3-D methods lead to spherical designs. The subsections detailing assembly methods are divided in gun assembly (subsonic assembly) and implosion assembly (supersonic assembly). Even though it superficially resembles gun assembly, linear implosion is discussed in the implosion section since it actually has much more in common with other shock compression approaches. The performance of an assembly method can be evaluated by two key metrics: the total insertion time and the degree of compression. Total insertion time (and the related insertion rate) is principally important for its role in minimizing the probability of predetonation. The degree of compression determines the efficiency of the bomb, the chief criteria of bomb performance. Short insertion times and high compression are usually associated since the large forces needed to produce one also tend to cause the other. http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.5.1

milstar: 4.1.6.2 Implosion Assembly High explosive driven implosion assembly uses the ability of shock waves to instantaneously compress and accelerate material to high velocities. This allows compact designs to rapidly compress fissile material to densities much higher than normal on a time scale of microseconds, leading to efficient and powerful explosions. The speed of implosion is typically several hundred times faster than gun assembly (e.g. 2-3 microseconds vs. 1 millisecond). Densities twice the normal maximum value can be reached, and advanced designs may be able to do substantially better than this (compressions of three and four fold are often claimed in the unclassified literature, but these seem exaggerated). Weapon efficiency is typically an order of magnitude better than gun designs. http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.5.1


milstar: It is interesting to note that to double the density of one cubic centimeter of uranium (18.9 grams) 1.7 x 10^12 ergs is required for shock compression. This is the amount of energy found in 40 grams of TNT, about twice the weight of the uranium. The efficiency of an implosion system at transferring high explosive energy to the core is generally not better than 30%, and may be worse (possibly much worse if the design is inefficient). This allows us the make a good estimate of the amount of explosive required to compress a given amount of uranium or plutonium to high density (a minimum of 6 times the mass of the fissile material for a compression factor of 2). These curves also show that very high shock compressions (four and above) are so energetically expensive as to be infeasible. To achieve a factor of only 3, 7.1x10^11 ergs/g of uranium is required. Factoring implosion efficiency (30%), the high explosive (if it is TNT) must have a mass 56 times that of the material being compressed. Reports in the unclassified literature of compressions of four and higher can thus be safely discounted. Compression figures for plutonium are classified above 30 kilobars, but there is every reason to believe that they are not much different from that of uranium. Although there are large density variations from element to element at low pressure, the low density elements are also the most compressible, so that at high pressures (several megabars) the plot of density vs atomic number becomes a fairly smooth function. This implies that what differences there may be in behavior between U and Pu at low pressure will tend to disappear in the high pressure region. Actually, even in the low pressure region the available information shows that the difference in behavior isn't all that great, despite the astonishingly large number of phases (six) and bizarre behavior exhibited by plutonium at atmospheric pressure. The highest density phases of both metals have nearly identical atomic volumes at room pressure, and the number of phases of both metals drops rapidly with increasing pressure, with only two phases existing for both metals above 30 kilobars. The lowest density phase of plutonium, the delta phase, in particular disappears very rapidly. The amount of energy expended in compression at these low pressures is trivial. The compression data for uranium is thus a good substitute for plutonium, especially at high pressures and high compressions.

milstar: The task of developing a successful spherical implosion wave system is extremely difficult. Although the concept involved is simple, actually designing a lens is not trivial. The detonation wave velocity is affected by events occurring some distance behind the front. When the wave crosses from the fast explosive into the slow explosive it does not instantly assume the steady state detonation velocity of the slow explosive. Unlike the analogy with light, the velocity change is gradual and occurs over a significant distance. Since energy can be lost through the surface of the lens, thus reducing the fast wave velocity, the test environment of the lens also affects its performance. The behavior of a lens can only be calculated using sophisticated 2 and 3-D hydrodynamic computer codes that have been validated against experimental data.

milstar: he planar implosion process is some two orders of magnitude faster than gun assembly, and can be used with materials with high neutron background (i.e. plutonium). By analogy with spherical and cylindrical implosion, the natural name for this technique might be "linear implosion". This name is used for a different approach discussed below in Hybrid Assembly Techniques. Most of the comments made above about implosion still apply after a fashion, but some ideas, like the levitated core, have little significance in this geometry. Planar implosion is attractive where a cylindrical system with a severe radius constraint exists.

milstar: he planar implosion process is some two orders of magnitude faster than gun assembly, and can be used with materials with high neutron background (i.e. plutonium). By analogy with spherical and cylindrical implosion, the natural name for this technique might be "linear implosion". This name is used for a different approach discussed below in Hybrid Assembly Techniques. Most of the comments made above about implosion still apply after a fashion, but some ideas, like the levitated core, have little significance in this geometry. Planar implosion is attractive where a cylindrical system with a severe radius constraint exists. http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.5.1

milstar: Three physical phenomenon may contribute to reactivity insertion: density increase due to collapsing voids in the core; density increase from phase transformations (if delta-phase plutonium is used); and reduction in surface area by deformation into a sphere (or approximate sphere). Since the detonation generated pressure are transient, and affect different parts of the mass at different times, compression to greater than normal densities do not occur. The reactivity insertion then is likely to be rather small, and weapon efficiency quite low (which can be offset by boosting). The use of metastable delta-phase plutonium alloys is especially attractive in this type of design. A rather weak impulse is sufficient to irreversibly collapse it into the alpha phase, giving a density increase of 23%. The supercritical mass formed by linear implosion is stable - it does not disassemble or expand once the implosion is completed. This relieves the requirement for a modulated neutron initiator, since spontaneous fission (or a calibrated continuous neutron source) can assure detonation. If desired, a low intensity initiator of the polonium/beryllium type can no doubt be used. Special initiation patterns may be advantageous in this design, such as annual initiation - where the HE cylinder is initiated along the rim of each end to create a convergent shock wave propagating up the cylinder.

milstar: 4.1.6.2.2.3 Advanced Wave Shaping Techniques The conical lens design used by the Manhattan Project and early U.S. nuclear weapons is not the only lens design possible, or even the best. It had the crucial advantage of being simple in form (eliminating the need to design or fabricate complex shapes), and of having a single design variable - the cone apex angle. This made it possible to devise workable lenses with the crude methods then available. Other geometric arrangements of materials that transmit shocks slowly can be used to shape a convex shock into a concave one. ############################# http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1 В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины.

milstar: A low density, non-spherical, fissile mass can be squeezed and deformed into a supercritical configuration by high explosives without using neat, symmetric implosion designs. The technique of linear implosion, developed at LLNL, apparently accomplishes this by embedding an elliptical or football shaped mass in a cylinder of explosive, which is then initiated at each end. The detonation wave travels along the cylinder, deforming the fissile mass into a spherical form. Extensive experimentation is likely to be required to develop this into a usable technique. Three physical phenomenon may contribute to reactivity insertion: density increase due to collapsing voids in the core; density increase from phase transformations (if delta-phase plutonium is used); and reduction in surface area by deformation into a sphere (or approximate sphere). Since the detonation generated pressure are transient, and affect different parts of the mass at different times, compression to greater than normal densities do not occur. The reactivity insertion then is likely to be rather small, and weapon efficiency quite low (which can be offset by boosting). The use of metastable delta-phase plutonium alloys is especially attractive in this type of design. A rather weak impulse is sufficient to irreversibly collapse it into the alpha phase, giving a density increase of 23%. The supercritical mass formed by linear implosion is stable - it does not disassemble or expand once the implosion is completed. This relieves the requirement for a modulated neutron initiator, since spontaneous fission (or a calibrated continuous neutron source) can assure detonation. If desired, a low intensity initiator of the polonium/beryllium type can no doubt be used. Special initiation patterns may be advantageous in this design, such as annual initiation - where the HE cylinder is initiated along the rim of each end to create a convergent shock wave propagating up the cylinder.

milstar: The smaller TOM initiator (about 1 cm) that replaced the Urchin was probably based on the hollow conical pit (or tetrahedral pit) design. This design was proposed for use in 1948, but not put into production until January 1950 by Los Alamos. It was first tested (in a weapon test) in May 1951. One advantage of the TOM initiator was more efficient use of the polonium (more neutrons per gram of Po-210). One sophisticated design that was developed and patented by Klaus Fuchs and Rubby Sherr during the Manhattan project was based on using the outgoing implosion rebound, rather than the incoming converging shock to accomplish mixing. This slight delay in initiation thus achieved was expected to allow significantly more compression to occur.

milstar: Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако подводная ударная волна отличается от воздушной ударной волны своими параметрами. На одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия— меньше. Например, максимальное избыточное давление на расстоянии 900 м от центра ядерного взрыва мощностью 100 кт в глубоком водоеме составляет 19 000 кПа, а при взрыве в воздушной среде — около 100 кПа. https://refdb.ru/look/2180921-p4.html

milstar: It is interesting to note that to double the density of one cubic centimeter of uranium (18.9 grams) 1.7 x 10^12 ergs is required for shock compression. This is the amount of energy found in 40 grams of TNT, about twice the weight of the uranium. The efficiency of an implosion system at transferring high explosive energy to the core is generally not better than 30%, and may be worse (possibly much worse if the design is inefficient). This allows us the make a good estimate of the amount of explosive required to compress a given amount of uranium or plutonium to high density (a minimum of 6 times the mass of the fissile material for a compression factor of 2). http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.5 These curves also show that very high shock compressions (four and above) are so energetically expensive as to be infeasible. To achieve a factor of only 3, 7.1x10^11 ergs/g of uranium is required. Factoring implosion efficiency (30%), the high explosive (if it is TNT) must have a mass 56 times that of the material being compressed. Reports in the unclassified literature of compressions of four and higher can thus be safely discounted.

milstar: Compression figures for plutonium are classified above 30 kilobars, but there is every reason to believe that they are not much different from that of uranium. Although there are large density variations from element to element at low pressure, the low density elements are also the most compressible, so that at high pressures (several megabars) the plot of density vs atomic number becomes a fairly smooth function. This implies that what differences there may be in behavior between U and Pu at low pressure will tend to disappear in the high pressure region. Actually, even in the low pressure region the available information shows that the difference in behavior isn't all that great, despite the astonishingly large number of phases (six) and bizarre behavior exhibited by plutonium at atmospheric pressure. The highest density phases of both metals have nearly identical atomic volumes at room pressure, and the number of phases of both metals drops rapidly with increasing pressure, with only two phases existing for both metals above 30 kilobars. The lowest density phase of plutonium, the delta phase, in particular disappears very rapidly. The amount of energy expended in compression at these low pressures is trivial. The compression data for uranium is thus a good substitute for plutonium, especially at high pressures and high compressions.

milstar: В чистом плутонии дельта фаза не может существовать при давлении более 1 килобара. Для сравнения, увеличение на 25% плотности урана (или альфа фазы плутония) требует давления 450 килобар. При давлениях свыше 30 килобар плутоний существует только в альфа и бета фазах. Это свойство перехода дельта -> альфа фазы (и увеличение плотности плутония на 25%) используется в имплозивных проектах оружия. Плутоний можно стабилизировать в дельта фазе при комнатной температуре путем сплавления его с трехвалентными металлами, такими как галлий, алюминий, церий, индий и америций в концентрации нескольких молярных процентов. Даже стабилизированная, дельта фаза продолжает оставаться легко сжимаемой давлением в несколько килобар. Особенно интересен факт, что в стабилизированном галлием плутонии дельта фаза действительно метастабильна при содержании галлия менее 4 молярных процентов и плотности 15,8 г/см^3. Это означает, что процесс фазового перехода под давлением в альфа фазу необратим. Быстрый переход подкритичного образца из дельта в более плотную альфа фазу делает его надкритичным и вызывает ядерный взрыв.

milstar: This is probably a fair description of the W-54 Davy Crockett warhead. This warhead was the lightest ever deployed by the US, with a minimum mass of about 23 kg (it also came in heavier packages) and had yields ranging from 10 tons up to 1 Kt in various versions. The warhead was basically egg-shaped with the minor axis of 27.3 cm and a major axis of 40 cm. The test devices for this design fired in Hardtack Phase II (shots Hamilton and Humboldt on 15 October and 29 October 1958) weighed only 16 kg, impressively close to the minimum mass estimated above. These devices were 28 cm by 30 cm. http://nuclearweaponarchive.org/News/DoSuitcaseNukesExist.html Later and lighter 155 mm designs were also developed -- the W74 (canceled early in development), and the W-82/XM-785 shell. The W82 had a yield of up to 2 kilotons and weighed 43 kg (95 lb), but included a number of sophisticated additional features within this weight. Since it was capable of being fielded with a "neutron bomb" (enhanced radiation) option, which is intrinsically more complex than a basic nuclear warhead, and was in addition rocket boosted, the actual minimum nuclear package was substantially lighter than the weight of the complete round. Its overall length was 86 cm (34").

milstar: The test devices for this design fired in Hardtack Phase II (shots Hamilton and Humboldt on 15 October and 29 October 1958) weighed only 16 kg, impressively close to the minimum mass estimated above. These devices were 28 cm by 30 cm, Humboldt used PBX-9404 as the explosive.

milstar: Using an advanced flying plate design it is possible to compress a 1 kg plutonium mass sufficiently to produce a yield in the 100 ton range. This design has an important implication on the type of fissile material that can be used. The high compression implies fast insertion times, while the low mass implies a low Pu-240 content. Taken together this means that a much higher Pu-240 content than normal weapon grade plutonium could be used in this type of design without affecting performance. In fact ordinary reactor grade plutonium would be as effective as weapon grade material for this use. Fusion boosting could produce yields exceeding 1 kt with this system. 4.2.4 High Yield Weapons A nominal yield fission weapon uses one critical mass of material (at normal density) and has a yield around 20 kt. HEU has a larger critical mass than plutonium, but its efficiency is lower so the yield of a nominal weapon of either material is roughly the same. High yield fission weapons use more than one critical mass of material. These weapons necessarily use hollow core designs, since this is the only way to render the core subcritical. High yield designs are inherently more efficient than nominal designs (assuming complete assembly occurs) since the large core radius reduces neutron leakage, and takes longer to disassemble. The first factor experiences diminishing returns as the core size grows and leakage becomes small, eventually becoming negligible for the core as a whole. For this reason reflectors have little value in high yield designs, although by reducing the drop in neutron flux near the surface they help fission this outer layer more efficiently. The second factor (longer disassembly time) continues to enhance efficiency regardless of how large the core becomes, eventually though other factors begin to limit efficiency (see below). Tampers assist in retarding disassembly in high yield designs and probably significantly increase efficiency regardless of size. This is because they reduce the loss of the outer layers of material early in disassembly, allowing more of this material to fission. A high yield core becomes critical comparatively early in the implosion process, perhaps before the imploding shell has even impacted on the levitated core. This means the period during which predetonation can occur is much longer. This considerably limits the usefulness of plutonium in a high yield bomb, since large masses also mean higher neutron emission rates. If the amount of explosive is limited, the large core implodes at a significantly slower rate as well. A plutonium bomb similar to the Fat Man design, but containing four times as much fissile material (25 kg) would have a core diameter of 18 cm. To implode to the same final density (about 40) at the same velocity (2 km/sec) would take 18.7 microseconds, 4 times as long. The very low Pu-240 content of the plutonium produced during WWII (0.9%) would still give a reasonable chance of complete assembly but more economical grades (with higher Pu-240 content) would not. Such a design would have a yield in excess of 100 kt. The limiting efficiency of ~50% (see below) would give a yield of 210 kt. Higher implosion velocities are possible (permitting higher probabilities of optimum yield, or cheaper grades of plutonium), but this gives an indication of the practical limit for high yield plutonium fission bombs.

milstar: At a time when France had no access to enriched uranium, and had not yet developed fusion boosting technology, they developed plutonium bombs with yields of up to 120 kt (the MR31 missile warhead), probably the highest yield pure plutonium, pure fission device ever developed. The plutonium grades produced by the French had considerably lower burnups than US weapon grade plutonium (up 7% Pu-240), usually around 2% Pu-240, although "super-super-grade" plutonium (like the WWII US material) could have been produced especially for this weapon.

milstar: An additional advantage in using HEU in large fission bombs is its cheapness relative to Pu-239 and U-233. The largest pure fission bomb ever tested was the Mk 18F Super Oralloy Bomb (SOB) designed under the leadership of Dr. Theodore B. Taylor at Los Alamos. It demonstrated a yield of 500 kt in the Ivy King test at Eniwetok (15 November 1952 local). Predicted yield was 400-600 kt. 85% of the yield came from U-235 fission, the rest presumably from fission of a U-238 tamper. This bomb used the large diameter (60 inch) 92 point implosion system developed for the Mk 13 high yield fission bomb, and the Mk 6 bomb casing and components. The Mk 18 weighed 8600 lb, about 90 were eventually deployed. A reasonable assessment of the Mk 18 design is that it had a core containing 75 kg of HEU with a pre-implosion diameter of at least 24 cm, the levitated pit probably had a mass of 15 kg or so. It likely had a natural uranium tamper weighing about 150 kg. A density increase over the normal value of 2-2.5 is probable.



полная версия страницы