Форум » Дискуссии » Уран,Плутоний,Золото,Платина,Бериллий,Три́тий ... » Ответить

Уран,Плутоний,Золото,Платина,Бериллий,Три́тий ...

milstar: http://www.thebulliondesk.com/ Деньги любят тишину… Соглашение о продаже нашего оружейного урана Соединенным Штатам продолжает действовать Николай Леонов Генерал-лейтенант КГБ, начальник Аналитического управления 09.03.2011 История эта - тщательно замалчиваемая. Кто-то из «новых русских» часто произносил известную фразу: «Деньги любят тишину, а большие деньги – мертвую тишину». Под эти «критерии» подпадает операция с продажей российского оружейного урана и плутония Соединенным Штатам Америки, начатая в 1993-м. Уже в последние годы существования Советского Союза Михаил Горбачев был постоянно озабочен поиском возможностей потрафить Западу, заручиться благорасположением Соединенных Штатов. В этом ряду - его соглашение от 7 декабря 1987-го с Вашингтоном о ликвидации ракет средней и меньшей дальности. В соответствии с текстом документа СССР и США обязывались в течение трех лет уничтожить все имевшиеся у них баллистические и крылатые ракеты с дальностью стрельбы от 500 до 1000 километров - так называемые «ракеты меньшей дальности» и с дальностью стрельбы от 1000 до 5500 километров - так называемые «ракеты средней дальности». На первый взгляд, соглашение выглядело разумным: избыточный арсенал накопленных ракет и атомных головок был слишком велик. Но М. Горбачев и Э. Шеварднадзе не учли того обстоятельства, что очень многие страны из числа соседей СССР - КНР, КНДР, Индия, Пакистан, Иран, Израиль - начинали к тому времени активно развивать свое ракетостроение, создавая именно носители «меньшей» и «средней» дальности. Их арсенал не представлял угрозы для США, но советская территория оказывалась в пределах досягаемости. Все время играя в «поддавки» с США, М. Горбачев, не спросив никого из своих военных советников, согласился уничтожить и самый современный по тем временам советский ракетный комплекс «Ока», который даже не входил в категорию ракет «меньшей дальности» - он был типичным тактическим оружием, имел дальность стрельбы меньше 500 километров. Но для США «Ока» была как камушек в сапоге солдата на марше. Эта самоходная установка могла использовать и обычные и ядерные боеприпасы, она действовала на нервы воякам из армий НАТО, и те уговорили Генерального секретаря ЦК КПСС согласиться на ее уничтожение. Чего никогда не простили ему наши военные. Итак, к началу 90-х годов со всех уничтожаемых ракет были сняты ядерные боеголовки, которые складировали в хранилищах, а сами носители разрушили. А тут подоспел развал Советского Союза. Часть ракетно-ядерных комплексов оказалась на территориях новых государств - Украины, Белоруссии и Казахстана, что вызвало глубокую озабоченность в США, для которых увеличение числа ядерных держав в мире всегда было и остается неприемлемым. Единственное исключение они охотно делают только для Израиля, как известно. Украину, Белоруссию и Казахстан под прямой угрозой заблокировать их прием в ООН западные страны заставили безоговорочно сдать оказавшееся под их контролем ракетно-ядерное оружие России, которая брала на себя обязательство обеспечить его безопасное хранение. В 1992-м был подписан так называемый Лиссабонский протокол, по которому Украина, Белоруссия и Казахстан были объявлены странами, не имеющими ядерного оружия. В результате всех этих событий к 1993-му на военных складах Российской Федерации скопилось около 500 тонн оружейного урана, снятого со всех видов уничтоженных ракетных комплексов ------------------------------------------------------------- . Для сравнения: в атомной бомбе, сброшенной на Хиросиму, было всего 10 кг оружейного урана. К этому времени российское правительство, постоянно испытывавшее катастрофическую нехватку средств для пополнения госбюджета, получило вкрадчивое предложение от США, выразивших готовность скупить весь этот урановый «излишек» за 12 миллиардов долларов. Борису Ельцину и Виктору Черномырдину идея показалась весьма привлекательной и даже спасительной. В то время российское правительство было похоже на алкоголика, испытывавшего жестокий синдром похмелья и готового за стакан водки отдать что угодно, не то, что урановый «излишек». Переговоры шли споро и в полном секрете. С американской стороны их вел вице-президент Альберт Гор, с российской - премьер-министр Виктор Черномырдин, поэтому достигнутая договоренность получила их имена. Соглашение специально «загнали» на столь высокий уровень - чтобы не выносить текст соглашения на ратификацию законодательными органами двух стран. Дескать, речь - о простом межправительственном соглашении по экономическим вопросам, не затрагивающем проблемы безопасности государств. Европейские страны - Франция, Германия, Великобритания - узнавшие о ведущихся переговорах, выразили горячее желание принять в них участие и заполучить часть российского урана, но США вежливо - и жестко – пресекли их претензии в зародыше. Соглашение было подписано 18 февраля 1993-го. Оно предусматривало продажу в течение предстоявших 20 лет российского оружейного урана в количестве 500 тонн Соединенным Штатам Америки для использования его в атомной энергетике. Общая стоимость уникального товара была определена в 11,9 миллиарда долларов. Оружейный уран со степенью обогащения 90 процентов по изотопу U-235 должен был быть разбавлен на российских предприятиях до 4,4 процентной концентрации, что соответствует уровню ТВЭЛов - тепловыделяющих элементов, используемых в АЭС. В Соединенных Штатах на атомных электростанциях насчитывается 109 реакторов, которые, таким образом, получали запас энергетического сырья на много десятилетий вперед. --------------------- Первые партии низкообогащенного урана были отгружены из России в 1995-м. В США уплыли 186 тонн топливного урана, для изготовления которых были переработаны 244 боеголовки общим весом в 6 тонн оружейного урана. Дальше конвейер доставки в США ядерного топлива заработал с нарастающим темпом. К исходу 2008-го - последние известные мне данные - были уже проданы 352 тонны - из оговоренных 500 - оружейного урана. Это количество соответствует 14 тысячам демонтированных боеголовок. --------------------------------------------------------------------------------- Официальные ведомства России максимально засекретили всю информацию, связанную с этой сделкой, но сведения о ней все же просочились в 1997-м в прессу. Потом к этой теме обращались депутаты Государственной Думы Игорь Родионов, Виктор Черепков и другие: они запрашивали Федеральное агентство по атомной энергии, Министерство обороны и главу государства с просьбой дать полную информацию по этому соглашению, но не получили удовлетворявших их ответов. Тем временем в американских изданиях промелькнули сообщения о том, что Россия сильно продешевила при совершении сделки, ибо стоимость 500 тонн урана значительно выше цены, которая была определена соглашением. Намекали, что В. Черномырдин получил очень крупный «откат» за эту сделку. Джордж Буш-старший публично назвал В. Черномырдина «коррупционером». Французская газета «Монд» также отметилась подобными публикациями. Виктор Степанович грозился подать на них в суд за диффамацию, но отказался от таких намерений. Почему – неизвестно. Я дважды публично выступал по вопросам этой сделки. Первый раз - в 2005-м на Всемирном Русском Народном соборе, второй – в бытность депутатом Госдумы в 2006-м году в Комитете по безопасности. Выступление было приурочено к выполнению Россией половины своих обязательств по этой сделке: в США было отгружено 250 тонн оружейного урана. Я выступил с предложением выйти из этой коммерческой сделки, поскольку в 2006-м Россия уже не испытывала никаких финансовых трудностей, и остающиеся 250 тонн оружейного урана были для безопасности государства несравненно ценнее 6 миллиардов долларов. ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Меня не поддержали, и выполнение наших обязательств продолжалось. Нынешний руководитель Росатома Сергей Кириенко открыто заявил недавно, что Россия безусловно выполнит к 2013-му все свои обязательства по соглашению и с гордостью добавил: «Мы уничтожаем гораздо больше высокообогащенного урана, чем США и все другие страны вместе взятые». ------------------------------------------------------------------------------------------------- S.Kirienko -grazdanin IzraIya,ego nastojaschaja familiya Izraitel ######################################### Rossii neobxodimo 1.Razwernut RSMD s yabch protiv Izrailya . 2. Sposbstwowat sozdaniju MBR/ICBM s yabch w kazdoj strane ,wrzdebnoj bloku USA/NATO/Izrail Сейчас «придушенная» дискуссия свелась к вопросу о цене проданного урана. Самые отъявленные критики соглашения оценивают проданный уран в 8 триллионов долларов. Наиболее уравновешенные защитники позиции правительства сходятся на 50 миллиардах долларов - что в любом случае в 4 с лишним раза больше, чем реально полученная Россией сумма. Делались попытки определить стоимость проданного урана, сопоставив его энергетический потенциал с энергетическим потенциалом нефти. Нехитрые операции на калькуляторе показали: 1 тонна оружейного урана по тепловыделяющей способности равна 1 миллиону 350 тоннам нефти. Умножим эту последнюю цифру на 500 и получим 675 миллионов тонн нефти. Если принять среднюю цену нефти за 80 долларов за баррель, то окажется, что стоимость нашего урана, проданного в США, составила бы 405 миллиардов долларов, или в 35 раз больше, чем мы в реальности получили. Эти цифры наиболее близки к реальности. Но ведь не только деньгами – пусть даже очень большими - измеряется ценность оружейного урана. Россия уже никогда не сможет наработать такое его количество. Мы потеряли прежние месторождения урановой руды, оставшиеся в Казахстане, Узбекистане и на территории бывшей ГДР. В России сохранилась только одна шахта - в Иркутской области. Нет теперь и прежних обогатительных комбинатов. Когда руководителей нашей атомной промышленности упрекают в том, что мы продали за бесценок наше энергетическое будущее, они отмахиваются, уверяя, что у нас и без этого достаточно запасов расщепляющихся материалов. Но оппоненты не унимаются, настаивая на том, что, дескать, запасы оружейного урана у нас и в США были примерно одинаковыми, между 500 и 600 тоннами. Из этого делается вывод, что мы продали Соединенным Штатам практически большую часть нашего уранового достояния, чем нанесли непоправимый урон безопасности страны. Ссылаясь на данные американской прессы, оппоненты правительства утверждают, что США оценили свои запасы урана и плутония в 4 триллиона долларов, а скупили наши запасы за смехотворную сумму в 12 миллиардов. Внести ясность в эту запутанную ситуацию могли бы компетентные ведомства России, но они хранят гробовое молчание. С какой бы стороны мы не рассматривали эту сделку, придется признать, что она была крайне невыгодной для национальных интересов России. Соединенные Штаты, которые даже во сне мечтают об «атомной стерилизации» России, получили огромное преимущество в энергетической обеспеченности на длительный срок. Они мечтают о наступлении таких времен, когда у России будут вырваны «атомные зубы» и она утратит способность адекватно ответить на смертельный укус своего потенциального противника. Им долго ждать? Специально для Столетия http://www.stoletie.ru/rossiya_i_mir/dengi_lubat_tishinu_2011-03-09.htm http://com-stol.ru/?p=3502 http://www.proatom.ru/modules.php?name=News&file=print&sid=2870

Ответов - 267, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 All

milstar: http://library.lanl.gov/cgi-bin/getfile?07-16.pdf A seventh allotrope of plutonium, the zeta (9phase, was dis- covered many years later in 1970 during careful studies of the equilibrium pressure- temperature phase diagram of plutonium. This phase exists only at high temperature over a limited pressure range and has such a complex crystal structure that it still today has not been positively identified.

milstar: It was known since 1943 that critical mass varies roughly with the square of the density of fissile materials, http://www.nuclearnonproliferation.org/Compressibility%20and%20the%20Minimum%20Amount%20of%20Fissile%20Material.pdf Soviet scientists, particularly A’ltshuler and Zababakhin [1] refined the art of implosion by recognizing that isentropic compression could produce much higher densities than the straight shock driven implosion, and they developed the technology used in their nuclear weapons program in late 40’s - early 50’s, using multilayered graded impactors. This technique was refined in the US in the mid 50’s and early 60’s, making possible density increase by a factor of three, thus doubling yields, or the converse, using less fissile material in so called “fractional crit” weapons. In the case of Iran, using 93% HEU metal bare sphere with Mc of 52kg, isentropic compression by a factor of 3 decreases the critical mass by a factor of approximately 9 to about 5.8kg, and for delta phase Plutonium metal sphere, from Mc of about 16kg to about 1.8kg. To get a yield, you need a super critical mass, so add another 10%, for a total of 6.5 kg HEU and 2 kg Pu respectively.

milstar: Typical shockwaves both compress and heat the material, ###################################### limiting the amount of compression that can be obtained with normal flying plate explosive experiments to about 2 for a pressure of about 6 Mbars in Uranium. Figure 1 shows the shock Hugoniot equations of state (EOS) obtained initially with explosive flyer impactors (invented by Goranson in US and A’ltshuler in the USSR around 1948), and later with more sophisticated spherical shock amplifiers [2]. To obtain higher pressures, A’ltshuler and Zababakhin devised hemispherical implosion devices to increase pressures by an order of magnitude, initially combining the flying impactor concept with the amplification through convergence offered by spherical implosion. The Soviet scientists developed multistage cumulative spherical explosive devices [3] that could provide impactor speeds of about 18 km/s and pressures of 1.35TPa (about 13.5 Mbars), and a compression factor (σ) of about 2.5 (see Fig. 2) . It was recognized that isentropic compression applies pressure gradually without heating the material, ################################################################## so there is no limit to the achievable compression if you have the driving energy. The challenge was the conversion of explosive-driven shocks to a smoothly increasing pressure ramp.


milstar: In 2006, a panel of scientists concluded that the plutonium primaries, or "pits," of thermonuclear weapons — the atom-bomb triggers — aged much slower than previously thought. The panel wrote that: "...there is no degradation in performance of primaries of stockpile systems due to plutonium aging that would be cause for near-term concern regarding their safety and reliability. Most primary types have credible minimum lifetimes in excess of 100 years as regards aging of plutonium; those with assessed minimum lifetimes of 100 years or less have clear mitigation paths that are proposed and/or being implemented."[10] http://www.nti.org/analysis/articles/nuclear-stockpile-modernization/ The W76 LEP is expected to extend the life of the warhead by 30 years, according to the NNSA, by "refurbishing the nuclear explosive package, the arming, firing, and fusing system, the gas transfer system, and associated cables, elastomers, valves, pads, cushions, foam supports, telemetries, and other miscellaneous parts."[16] In 2009, the NNSA completed an LEP for the B61-7 and B61-11 nuclear bombs, extending their service lives by 20 years "by refurbishing the canned subassembly and replacing the associated seals, foam supports, cables and connectors, washers, o-rings, and limited life components."[17] The two versions of the B61 are designed to produce variable explosive yields and could be used as tactical or strategic weapons. The B61-11 is the only nuclear weapon in the U.S. arsenal with a so-called "bunker-busting" capability, as it can penetrate a few feet into the earth before detonating.[18] The Air Force is also replacing the aging W78 warheads used on Minuteman III intercontinental ballistic missiles with the newer W87 warhead.[19] The W87 first entered the stockpile in 1986.[20] ( the B61 nuclear bomb, for example, is made of more than 5,900 parts[11]

milstar: http://www.fas.org/sgp/othergov/doe/lanl/p22/subcrits.pdf The goal of Rebound was to study how small plutonium samples, typically a few tens of grams each, respond to shock compression at three specific high-pressure conditions—80 GPa (800 kbar), 170 GPa (1.7 Mbar), and 230 GPa (2.3 Mbar). Three separate experimental assemblies were fielded. Each of the assemblies used a 300-mm- diameter stainless-steel flyer plate that was driven down a barrel by high-explosives (HE) product gases until the plate struck a Lexan target plate holding several samples of gallium-stabilized, delta-phase plutonium. The thickness of the explosives charge, combined with the driver-plate thickness and run distance, determined the driver-plate velocity and consequently the pressures induced in the samples. The aim was to determine the shock Hugoniot (the locus of end points that can be reached in shock wave compression) and sound speed behind the shock front at all three pressures.

milstar: 4.1.6.2.1 Energy Required for Compression As explained in Section 3.4 Hydrodynamics, shock compression dissipates energy in three ways: through work done in compressing the shocked material, by adding kinetic energy to the material (accelerating it), and by increasing the entropy of the material (irreversible heating). Only the first of these is ultimately desirable for implosion, although depending on the system design some or all of the kinetic energy may be reclaimable as compressive work. The energy expended in entropic heating is not only lost, but also makes the material more resistant to further compression. Shock compression always dissipates some energy as heat, and is less efficient than gentle isentropic (constant entropy) compression. Examining the pressure and total energy required for isentropic compression thus provides a lower bound on the work required to reach a given density. Below are curves for the energy required for isentropic and shock compression of uranium up to a compression factor of 3. For shock compression only the energy the appears as internal energy (compression and heating) are included, kinetic energy is ignored. http://www.maznets.com/nuke/Nfaq4-1.html

milstar: Simplified schematic of a multistage thermonuclear weapon Numbered parts: bomb casing interior filling (plastic material) detonators conventional high explosive pusher (aluminum, others) and reflector (beryllium, tungsten) tamper (uranium-238) fissile core (plutonium or uranium-235) radiation shield (tungsten, others) fusion pusher/tamper (uranium-235 sleeve) fusion fuel (solid lithium-deuteride) sparkplug (uranium-235 or plutonium) Sequence of events in explosion: STAGE 1: fission explosion Multiple detonators (3) simultaneously initiate detonation of high explosives (4). As detonation progresses through high explosives (4), shaping of these charges transforms the explosive shock front to one that is spherically symmetric, travelling inward. Explosive shock front compresses and transits the pusher (5) which facilitates transition of the shock wave from low-density high explosive to high-density core material. Shock front in turn compresses the reflector (5), tamper (6), and fissile core (7) inward. When compression of the fissile core (7) reaches optimum density, a neutron initiator (either in the center of the fissile core or outside the high explosive assembly) releases a burst of neutrons into the core. The neutron burst initiates a fission chain reaction in the fissile core (7): a neutron splits a plutonium/uranium-235 atom, releasing perhaps two or three neutrons to do the same to other atoms, and so on; energy release increases geometrically. Many neutrons escaping from the fissile core (7) are reflected back to it by the tamper (6) and reflector (5), improving the chain reaction. The mass of the tamper (6) delays the fissile core (7) from expanding under the heat of the building energy release. Neutrons from the chain reaction in the fissile core (7) cause transmutation of atoms in the uranium-235 tamper (6). As the superheated core expands under the energy release, the chain reaction ends. STAGE 2: fusion explosion Gamma radiation from the fission explosion superheats the filler material (2), turning it into a plasma. The vaporized filler material (2) is delayed from expanding outward by the bomb casing (1), increasing its tendency to compress the fusion pusher/tamper (9). Compression reaches the fusion fuel (10), which has been partially protected from gamma radiation by the radiation shield (8). Compression reaches the fissile sparkplug (11), compressing it to a super-critical mass. Neutrons from the explosion of stage 1 reach the fissile sparkplug (11) through the channel in the radiation shield (8), initiating a fission chain reaction. The sparkplug (11) explodes outward. The fusion fuel (10) is now supercompressed between the fusion pusher/tamper (9) from without and the sparkplug (11) from within, turning it into a superheated plasma. Lithium and deuterium nuclei collide in the fusion fuel (10) to produce tritium, and tritium and deuterium nuclei engage in fusion reactions: nuclei fuse by pairs into helium nuclei, producing a large energy release of gamma rays, neutrons, and heat. The large release of neutrons from fusion in the fusion fuel (10) causes transmutation of uranium-235 atoms in the fusion pusher/tamper (9), releasing additional energy. All reactions end as the superheated remnants expand under the energy release; the entire weapon is vaporized. Total elapsed time: about 0.00002 seconds. © 2001-2003, 2006 by Wm. Robert Johnston. Last modified 10 September 2006.

milstar: The W68 warhead was the warhead used on the UGM-73 Poseidon SLBM missile. It was developed in the late 1960s at Lawrence Livermore National Laboratory.It was manufactured starting in June 1970 and ending in June 1975 A total of 5,250 W68 warheads were produced, the single largest production run of any American nuclear weapon model. The W68 weighs 367 pounds (166 kg). The W68 had a design yield of 40-50 kilotons. ############################## Aging of the LX-09 Plastic Bonded Explosive used in the W68 [1] [2] [3] [4] [5] led to decomposition of the explosive, separating the binder and plasticizer[6], which then caused deterioration of the detonators. This required the whole production run to be retired or remanufactured with LX-10 and LX-10-1 as new explosives from November 1978 through 1983;

milstar: Appendix A Locations of U.S. Nuclear Weapons, by Type http://www.nrdc.org/nuclear/tkstock/p53-94.pdf Submarine-launched ballistic missiles W76/Trident I C4 N 3200 Bangor, WA (1,600) Kings Bay, GA (1,600) W88/Trident II D5 N 400 Kings Bay, GA (400)

milstar: The W68 weighs 367 pounds (166 kg). The W68 had a design yield of 40-50 kilotons. ############################## The W76 warhead's weight of 362 pounds (164 kg) has been disclosed. The W76 has a yield of 100 kilotons. ######################### Sea-launched ballistic missiles on British ballistic missile submarines will be armed with the upgraded W76-1 nuclear warhead currently in production in the United States http://www.fas.org/blog/ssp/2011/04/britishw76-1.php Approximately 1,200 W76-1s are current in production at the Pantex Plant in Texas. The W76-1 is an upgraded version of the W76-0 (or simply W76) produced between 1978 and 1987. Neutron pulse tubes for the W76 undergoing testing and certification at Sandia National Laboratories as part of the stockpile life extension program (LEP). http://nuclearweaponarchive.org/Usa/Weapons/W76NeutronTube1200c20.jpg Approximately 3,250 W76 warheads were produced between 1978 and 1988. The weapons armed the Poseidon C3 and Trident I C4 and currently the Trident II D5 missiles (together with about 400 W88 warheads). A modified W76 also arms Trident II missiles on British submarines.

milstar: The W76-1 LEP delivers on that need. The updated weapon, while incorporating modern safety enhancements, extends the service life of the weapon from 20 to 60 years. “MESA played a big part in this,” he says. “It played a significant role in delivering rad-hardened ASICs.” (Mark is referring to the role Sandia’s Microelectronics Development Laboratory and Microsystems and Engineering Sciences Applications played in delivering radiation-hardened application-specific integrated circuits to the LEP effort.) Strategic reentry systems like the W76-1 must survive hostile radiation environments. Sandia provides unique radiation effects expertise for developing rad-hardened technology and qualifying performance in severe radiation environments. The W76-1 capitalized on these capabilities to design the AF&F and used advanced computational tools and experimental facilities like the Annular Core Research Reactor to assess the performance in hostile radiation environments. http://www.sandia.gov/LabNews/091204.html

milstar: 1.The W68 had a design yield of 40-50 kilotons. weighs 367 pounds (166 kg). 5,250 were produced,LLNL ----------------------------------------------------------------------------------------------------------------- 2. The W76 has a yield of 100 kilotons. weight of 362 pounds (164 kg) 3,250 were produced 1976-1988,LANL ------------------------------------------------------------------------------------------------------------------ 3.The W-78 has a yield of 335-350 Kilotons .weight 700-800 pounds( 318-363 kg) 1083 were produced LANL ------------------------------------------------------------------------------------------------------------------- 4. The W-88 has a yield of 475 Kilotons .weight until 800 pounds(363 kg) 4000-5000 originally planned Total production: 400 -LANL --------------------------------------------------------------- 5. The W-87 has a yield 300-475 kt. weight -200-300 kg ,Number in Service -525 ,LLNL

milstar: The technical details of subcritical tests Subcritical nuclear experiments have been the closest thing to full-scale nuclear tests that any Western nation has conducted since the end of the Cold War. These experiments subject tiny amounts of plutonium to the force of the detonation of mining explosives. According to the U.S. Energy Department, which conducts these tests underground at the Nevada National Security Site's U1A complex, a vast 'warren' of roughly a mile of mined tunnels that were first excavated during the 1960s, the purpose of these tests is to study the aging properties of plutonium, which is the bomb fuel used in nuclear warheads. Most subcritical tests subject weapons grade plutonium (Pu-239) to extreme compression, ----------------------------------------------------------------------------------------- also called implosion, via high explosives or other shock-methods.6 --------------------------------------------------------------------------- The DOE no longer provides technical details on the subcritical tests but it does say that these 'hydrodynamic tests' involving small amounts of plutonium bombarded using conventional explosives are designed to create some of the physical conditions that fissile materials (i.e. plutonium) experience at the onset of a nuclear blast. ######### Dr. Ray Kidder of LLNL estimated in December 1991 that production of a safer new warhead design incorporating IHE to replace the W88 warhead would require four nuclear explosive tests -- three development tests and a production verification test

milstar: Fusion-boosting can also be used in gun-type weapons. The South Africans considered adding it to their fission bombs which would have increased yield 5-fold (from 20-kt to 100-kt). Since implosion does not occur in gun devices, it cannot contribute to fusion fuel compression. Instead, some sort of piston arrangement might be used in which the kinetic energy of the bullet is harnessed by striking a static capsule. Fusion-boosting is a technique for increasing the efficiency of a small lightweight fission bomb by introducing a modest amount of Deuterium-Tritium mixture (typically containing 2-3 g of Tritium) inside the fission core. As the fission chain reaction proceeds and the core temperature rises at some point, the fusion reaction begins to occur at a significant rate. This reaction injects fusion neutrons into the core, causing the neutron population to rise faster than it would from fission alone (that is, the effective value of α increases). The fusion neutrons are extremely energetic (7 times more energetic than an average fission neutron) which causes them to boost the overall alpha far out of proportion to their numbers. This is due to several reasons: 1. Their high velocity creates the opposite of time absorption - time magnification. 2. When these energetic neutrons strike a fissile nucleus, a much larger number of secondary neutrons are released (e.g., 4.6 vs 2.9 for Pu239). 3. The fission cross-section is larger in both absolute terms and in proportion to scattering and capture cross-sections. Taking these factors into account, the maximum α value for Plutonium (density 19.8) is some 8 times higher than for an average fission neutron (2.5x109 vs 3x109). A sense of the potential contribution of fusion-boosting can be gained by observing at 1.5 g of Tritium (half an atom mole) will produce sufficient neutrons to fission 120 g of Plutonium directly and 660 g when the secondary neutrons are taken into account. This would release 11.6 kt of energy and would by itself result in a 14.7% overall efficiency for a bomb containing 4.5 kg of Plutonium (a typical small fission trigger). The fusion energy release is just 0.20-kt -- less than 2% of the overall yield. http://nuclearweaponarchive.org/Nwfaq/Nfaq4-3.html An example of such a weapon is the U.S. Mk 79-0 warhead for the XM-753 8" AFAP (artillery fired atomic projectile). This shell was 44 inches long and weighed 214 lb. The W-79-0 component was only about 37 cm long. -------------------------------------------------------- The maximum yield of the W-79-0 was 1 kt of which 0.75 kt was due to fusion and 0.25 kt to fission. t..e 200 mm *370 mm = 1 kt 105 mm *370 mm toze wozmozno ? The fissile material mass in this design would be something like 10 kg. The 750-ton fusion yield indicates at least 10 g of D-T mixture for the fusion fuel. Under high static pressure Hydrogen can reach densities of around 0.1 mole/cc (0.25 g/cm3 for DT). This indicates a fuel capsule volume of at least 40 cm3 or a spherical radius of 2.5-3 cm including wall thickness.

milstar: This idea predates the invention of staged radiation implosion designs and was apparently invented independently at least 3 times. In each case, the evolution of the design seems to have followed the same general lines. It was first devised by Edward Teller in the United States (who called the design "Alarm Clock"). Then by Andrei Sakharov and Vitalii Ginzburg in the Soviet Union (who called it the "Layer Cake"). And finally by the British (inventor unknown). Each of these weapons research programs hit upon this idea before ultimately arriving at the more difficult -- but more powerful -- staged thermonuclear approach. There is room for significant variation in how this overall scheme is used, however. One approach is to opt for a "once-through" design. In this scheme, the escaping fission neutrons breed Tritium, the Tritium fuses, and the fusion neutrons fission the fusion tamper, thus completing the process. Since each fission in the trigger releases about one excess neutron (it produces two and a fraction, but consumes one) which can breed one Tritium atom which fuses and release one fusion neutron which causes one fast fission, the overall gain is to approximately double the trigger yield (perhaps a bit more). The gain can be considerably enhanced though (presumably through a thicker Lithium Deuteride blanket and a thicker fusion tamper). In this design, enough of the secondary neutrons produced by fast fission in the fusion tamper get scattered back into the fusion blanket to breed a second generation of Tritium. A coupled fission-fusion-fission chain reaction thus becomes established (or more precisely a fast fission → Tritium breeding → fusion → fast fission chain reaction). In a sense, the fusion part of the process acts as a neutron accelerator to permit a fast fission chain reaction to be sustained in the Uranium tamper. The process terminates when the fusion tamper has expanded sufficiently to permit too many neutrons to escape. The advantage of the once-through approach is that a much lighter bomb can be constructed. The disadvantage is that a much larger amount of expensive fissile material is required for a given yield. Yields exceeding a Megaton are possible if a correspondingly large fission trigger is used. This design was developed by the British. The Orange Herald device employed this concept and was tested in Grapple 2 (May 31, 1957). A U235 fission trigger with a yield in the 300-kt range was used for a total yield of 720 kt -- a boost in the order of 2.5-fold. A variant design was apparently deployed for a while in the fifties under the name Violet Club. 8 The second approach was adopted by the Soviets and proven in the test known as Joe-4 to the West (actually the 5th Soviet test) on August 12, 1953 at Semipalatinsk in Kazakhstan. This resulted in a very massive -- but much cheaper bomb -- since only a small amount of fissile material is required. Since there is an actual multiplication effect between the fusion reaction and the tamper fast fission, an improved yield can be obtained at reasonable cost by spiking the fusion layer with Tritium prior to detonation. The Joe-4 device used a 40-kt U235 fission bomb acted as the trigger and produced a total yield of 400-kt for a 10-fold enhancement although Tritium spiking was partly responsible. 15-20% of the energy was released by fusion (60-80 kt), and the balance (280-300 kt) was from U238 fast fission. A later test without Tritium spiking produced only 215-kt.

milstar: http://www.johnstonsarchive.net/nuclear/diagthermon.html Simplified schematic of a multistage thermonuclear weapon Sequence of events in explosion: STAGE 1: fission explosion Multiple detonators (3) simultaneously initiate detonation of high explosives (4). As detonation progresses through high explosives (4), shaping of these charges transforms the explosive shock front to one that is spherically symmetric, travelling inward. Explosive shock front compresses and transits the pusher (5) which facilitates transition of the shock wave from low-density high explosive to high-density core material. Shock front in turn compresses the reflector (5), tamper (6), and fissile core (7) inward. When compression of the fissile core (7) reaches optimum density, a neutron initiator (either in the center of the fissile core or outside the high explosive assembly) releases a burst of neutrons into the core. The neutron burst initiates a fission chain reaction in the fissile core (7): a neutron splits a plutonium/uranium-235 atom, releasing perhaps two or three neutrons to do the same to other atoms, and so on; energy release increases geometrically. Many neutrons escaping from the fissile core (7) are reflected back to it by the tamper (6) and reflector (5), improving the chain reaction. The mass of the tamper (6) delays the fissile core (7) from expanding under the heat of the building energy release. Neutrons from the chain reaction in the fissile core (7) cause transmutation of atoms in the uranium-235 tamper (6). As the superheated core expands under the energy release, the chain reaction ends. STAGE 2: fusion explosion Gamma radiation from the fission explosion superheats the filler material (2), turning it into a plasma. The vaporized filler material (2) is delayed from expanding outward by the bomb casing (1), increasing its tendency to compress the fusion pusher/tamper (9). Compression reaches the fusion fuel (10), which has been partially protected from gamma radiation by the radiation shield (8). Compression reaches the fissile sparkplug (11), compressing it to a super-critical mass. Neutrons from the explosion of stage 1 reach the fissile sparkplug (11) through the channel in the radiation shield (8), initiating a fission chain reaction. The sparkplug (11) explodes outward. The fusion fuel (10) is now supercompressed between the fusion pusher/tamper (9) from without and the sparkplug (11) from within, turning it into a superheated plasma. Lithium and deuterium nuclei collide in the fusion fuel (10) to produce tritium, and tritium and deuterium nuclei engage in fusion reactions: nuclei fuse by pairs into helium nuclei, producing a large energy release of gamma rays, neutrons, and heat. The large release of neutrons from fusion in the fusion fuel (10) causes transmutation of uranium-235 atoms in the fusion pusher/tamper (9), releasing additional energy. All reactions end as the superheated remnants expand under the energy release; the entire weapon is vaporized. Total elapsed time: about 0.00002 seconds.

milstar: Per MT explosive yield must computationally - with use pure 6Left and if each atom reacts - 15.6 kg of Lithiumdeuterid react; since in practice only about half of the material is used, 36 kg are necessary. The relationship of the explosive yields of the first and second stage is on maximally approx. for 200 a factor 20 to 50 is limited, usually. Since fission bombs are limited as first stages to several hundreds kT, a maximum explosive yield of the second stage of approx. results. 10 to 25 MT. There are several possibilities of increasing the explosive yield of a thermonuclear bomb: The fusion of the deuterium or tritium supplies here only a small contribution for power production, to 1 g with tritium sets free here less than 0.2 kT explosive yield. However by the freed neutrons from the fusion a larger portion of the fission fuel is split and sets a comparatively high energy free. The neutrons from 1 g tritium can split 80 g plutonium. Since the neutrons set free from the nuclear fusion are very fast, particularly release with splitting the plutonium many fast neutrons, which split for their part further other plutonium cores. Altogether become so by 1 g tritium approx. 450 g plutonium additionally split (compared with an identically constructed fission bomb without Boosting) and set approx. 7,5 kT additional energy freely. So the explosive yield can be doubled by Boosting by fission bombs in.

milstar: In all two-stage bombs the first stage can as geboosterte fission bomb is implemented, what today is generally used. Those two-stage fission bomb a similar structure as the plate Ulam hydrogen bomb has, instead of the hydrogen explosive device however a second fission stage after the implosion Design is used. This second stage thus not by chemical explosive one implodes, but by the first stage. This atom bomb Design was militarily probably never converted. The design was developed by Ulam for atom bombs of large explosion strength; it was only later recognized that thereby also hydrogen bombs can be designed. Such a two-stage fission bomb became with Castle Nectar Test to 13. May 1954 ignited. As is the case for the first stage apply concerning the conditions for the critical mass. In all H-bombs (partly also A-bombs) with outside uranium layer this can also also 235U or 239Pu to be implemented. Like that was the US-American test bomb Cherokee of 20. May 1956 a thermonuclear bomb according to the plate Ulam Design, however was manufactured the casing of the Lithiumdeuterids from high-enriched uranium. cylindrical uranium implosion Design appears possible and by American side during the H-bomb-development briefly one tested. Moderated nuclear weapons consist of a normal fission bomb, in which however the nuclear fuel of enriched uranium or plutonium does not consist, but of a metal hydride of these materials such as UH3. The hydrogen contained in the material affects the neutrons as moderator, i.e. it brakes it and increases with the fact the probability that they split further atoms of the fuel. Thus the critical mass sinks substantially, with uranium on up to under 1 kg. However the density of the nuclear fuel is substantially smaller, why the bomb loses its criticality after using the nuclear chain reaction very fast. Several American attempts with this building method were misses: In the test Ruth (Operation Upshot Knothole) to 31. March 1953 reached on 1,5 to 3 kT estimated atom bomb only one explosive yield of 0,2 kT and did not even destroy the 100 meters high mast, on which it was installed. Similarly the attempt ran Ray to 11. April 1953, in which uranium hydride was likewise used, however together with deuterium.

milstar: The production in a breeder reactor is determined by the reactor operating power. Typically these reactors produce somewhat less than one atom of product for every atom consumed by fission. The breeding ratio (number of product atoms/number of fuel atoms) is usually 0.8-0.9. U.S. isotope reactors at Savannah, GA have a ratio of 0.86. A reactor consumes about one gram of fuel for every megawatt-day of operation,. A 100 megawatt reactor can thus produce about 85 g of Pu a day, or 1 g of tritium. Natural uranium fueled breeder reactors may have a higher breeding ratio than this for plutonium, but they have limited capacity for producing other isotopes. http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html

milstar: U.S. weapon grade uranium is about 93.5% U-235, U.S. enrichment plants are capable of producing a 97.65% "top product" (this is used in naval reactors). http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html In 1998 ORNL Isotopes Division was offering weapon grade (93% U-235) for sale at $53/gram. Uranium with enrichments ranging from 40% to 80% U-235 has been used in large amounts in U.S. thermonuclear weapons as a yield-boosting jacketing material for the secondary fusion stage. U-235 has a spontaneous fission rate of 0.16 fissions/sec-kg. A pure mass of U-235 weighing 60 kg would thus emit only 9.6 fissions/sec, making gun assembly quite easy. U-238 produces 35 times as many neutrons per kg, so even a small percentage percent of U-238 contaminant multiples this rate several fold. http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html



полная версия страницы