Форум » Дискуссии » wireless 5G,4.4 -5 ghz,28 ghz ,wlan 2.4 -5.3 ghz » Ответить
wireless 5G,4.4 -5 ghz,28 ghz ,wlan 2.4 -5.3 ghz
milstar: China 5G Investments China’s total investments in 5G mobile networks should reach 2.8 trillion yuan (US $411 billion) between 2020 to 2030, which could represent the country’s most expensive telecommunications build-out in history. The China 5G market is heading toward a significant financial boom. According to Business Insider, the impact could account for 3.2 percent of China’s entire GDP in 2025, generate 8 million jobs, and add 2.9 trillion yuan in economic value by 2030. In June 2017, Huawei completed tests on 5G radio technology, adopting 5G New Radio (NR), massive multiple-input, multiple-output (MIMO), and other technologies to achieve over 6-Gb/s of single-user downlink throughput and over 18-Gb/s of cell peak rate. Huawei partnered with multiple vendors in the spirit of industry collaboration. ################## 5G Network Countries: South Korea Two service providers in South Korea are vying to be first to market with a 5G network. SK Telecom has acquired spectrum in the 3.5 GHz and 28 GHz frequencies in anticipation of deploying 5G. Meanwhile, Korea Telecom made a splash in early 2017 with its announcement that it would roll out a trial 5G network ahead of the 2018 Winter Olympics in Seoul, South Korea. The trial network is expected to cover events in Bokwang, Gangneung, Jeongseon, PyeongChang, and Seoul. ################################# South Korea telco LG U+ and its wireless network equipment partner Huawei confirmed that they have completed what they say is the world’s first large-scale 5G network test in a pre-commercial environment. The test network was situated in the Gangnam District of Seoul, South Korea and consisted of both 3.5GHz and 28GHz base stations (the two most popular frequency bands for 5G globally so far). ########################### The test results returned average data rates of 1 Gbps over the low band and more than 5 Gbps for dual connectivity over high and low bands. A peak data rate of 20 Gbps and an average data rate of more than 5 Gbps were achieved through dual connectivity over 3.5 GHz and 28 GHz. During the test, a 5G tour bus delivered 5G-based IPTV 4K, and a VR drone was demonstrated in the ‘5G for All’ experience room at the LG U+ headquarters, which required data rates ranging from 20 Mbps to 100 Mbps. ################# The ITU has already written performance requirements for future 5G networks (which it calls IMT-2020), saying they will deliver latency of less than 1 millisecond and user data rates of 100 megabits per second (mbps). Of these key parameters, industry insiders seemed most excited about the promise that low latency holds for future applications.The ITU has already written performance requirements for future 5G networks (which it calls IMT-2020), saying they will deliver latency of less than 1 millisecond and user data rates of 100 megabits per second (mbps). Of these key parameters, industry insiders seemed most excited about the promise that low latency holds for future applications. ######################### The frequencies in use at PyeongChang will be the 600-900MHz, 3.3-4.2GHz, 4.4-4.9GHz, 5.1-5.9GHz, 28GHz, and 39GHz spectrum bands ################### .. Base stations have to be very close together--100 meters apart in cities--and they have to blast out their signals in order to get them inside homes and buildings. And the only way to do this economically is with phased arrays and focused beams that are aimed directly at their targets. #################### The European Commission has estimated in a recent report that 5G would give a massive boost to different industries, ranging from transport to healthcare, and will add up to ?113 billion to the continent’s economy per year. It also envisages that the technology will create 2.3 million jobs in Europe by 2020, when the tech should be widely available across countries. However, the government of the tiny country of San Marino has allegedly signed an agreement with Telecom Italia that aims to facilitate a nation-wide switch to 5G from 4G, by the end of 2018. This means that San Marino could become the first country in Europe to offer 5G connectivity, allowing for up to 10 times faster connection during its planned 2018 trial in the state. ############### Российские «Мегафон» и МТС хотят развернуть сети нового поколения на предстоящем Чемпионате мира по футболу, японский NTT DoCoMo — на летних Олимпийских играх-2020 в Токио. ############### Директор по стратегическому планированию Tele2 Светлана Скворцова полагает, что 5G запустят в коммерческую эксплуатацию к 2021 году. По ее словам, на пути к 5G существует промежуточное решение — технология LTE Advanced (LTE-A). Она поддерживает скорость к100 Мбит/c для высокомобильных пользователей и 1 Гбит/c для стационарных. ########### мая 2017 года СМИ сообщили о планах Минкомсвязи по запуску 5G в городах-миллионниках России к 2020 году. Так, «в 2020 году сети 5G охватят восемь городов России, а в 2025 году — уже 16 населенных пунктов с населением свыше 1 млн человек», — пишет Газета.ру. При этом сеть еще не стандартизирована. 5G протестировали специалисты «Мегафона» совместно с китайской компанией Huawei. Правда делали они это в лабораторных условиях, далеких от реальности современных мегаполисов. МТС тоже не отстает от своих конкурентов. И заручившись поддержкой Ericsson также стараются развернуть на своих базовых станциях новые технологии в передачи данных. И в отличие от союзника «Мегафона», у Ericsson больше возможностей для реализации задуманного. Ведь четыре года назад они уже смогли развить скорость передачи данных до 5 гигабит в секунду. Но это было сделано в «тепличных» условиях лаборатории этой шведской компании.
milstar: What is 5G base station architecture? https://www.essentracomponents.com/en-us/news/industries/telecoms-data/what-is-5g-base-station-architecture
milstar: 5G base stations use a lot more energy than 4G base stations: MTN https://www.fierce-network.com/tech/5g-base-stations-use-a-lot-more-energy-than-4g-base-stations-says-mtn
milstar: www.omnidesigntech.com 5G Technology and Transceiver Architecture P a g e | 1 Omni Design Technologies, Copyright © 2021 5G Technology and Transceiver Architecture https://www.omnidesigntech.com/wp-content/uploads/2021/02/5G-whitepaper-v17.pdf https://www.omnidesigntech.com/news/omni-design-announces-silicon-validated-data-converters-on-tsmc-16nm-process/ Omni Design Announces Silicon Validated Data Converters on TSMC 16nm Process
milstar: Sub-6 GHz mMIMO Base Stations Meet 5G’s Size and Weight Challenges https://www.rellpower.com/wp/wp-content/uploads/2019/03/MWR-0745-MACOM.pdf
milstar: RF Front End Module Architectures for 5G Florinel Balteanu Skyworks Solutions Inc., CA92617, US https://d2mkdgs306yypx.cloudfront.net/-/media/SkyWorks/Documents/Articles/IEEE_BCICTS_201911.pdf
milstar: 5G Cellular User Equipment: From Theory to Practical Hardware Design https://arxiv.org/pdf/1704.02540
milstar: В городах с населением от 100 000 человек сети 5G на российском оборудовании должны быть развернуты в период с 2031 по 2035 годы. Об этом говорится в стратегии развития отрасли связи до 2035 года, утвержденной правительством в ноябре минувшего года. Сети 5G в России будут развернуты в крупнейших городах в ближайшие шесть лет с использованием серийного оборудования отечественного производства, следует из презентации главы Минцифры Максута Шадаева. 15 мая 2024 https://www.forbes.ru/tekhnologii/512419-5g-v-krupnyh-gorodah-rossii-postroat-na-otecestvennom-oborudovanii-k-2030-godu институт провел исследования, которые позволили выявить частоты в диапазонах 4,8-4,99 ГГц и 24-27,5 ГГц для тестирования и организации пилотных зон 5G, рассказал Иванов. Диапазон 4,8-4,99 ГГц признан решением Госкомиссии по радиочастотам приоритетной полосой для развертывания сетей 5G в России, отметил он. Представитель Минцифры сообщила Forbes о заинтересованности операторов в более широком диапазоне — 4,4-4,99 ГГц. «Именно в нем создаются все пилотные зоны», — уточнила она. Диапазон 24,25-27,5 ГГц, согласно таблице распределения радиочастот, тоже может использоваться для 5G. «Высокий диапазон нужен для организации точечного высокоскоростного покрытия мобильной связью. Это может быть, например, производственный цех, стадион или торговый центр. Чем выше диапазон, тем меньше территория покрытия, то есть для того, чтобы обеспечить покрытие населенного пункта, 24,25-27,5 ГГц не подходит», — поясняет представитель «Ростелекома». Оптимальным диапазоном для развития 5G остается 3,5 ГГц, резюмирует он. Речь о частотах 3,4-3,8 ГГц, которые считаются «золотым диапазоном», и они остаются за силовиками. ----------- планируемые на ближайшие годы производственные мощности в России должны будут составлять около 10 000-20 000 базовых станций 4/5G в год при суммарной годовой потребности 30 000-100 000 базовых станций. То есть это производство пока не будет готово для того, чтобы произвести все необходимое количество базовых станций для всех операторов «большой четверки», с их общим парком радиоэлектронных средств более 1 млн единиц, констатирует Виталий Шуб.
milstar: Как говорилось в совместном докладе МТС, «МегаФона», «ВымпелКома» (бренд «Билайн») и «Ростелекома» (владеет Tele2 в России), если им придется строить 5G в диапазоне 4,8–4,99 ГГц, затраты на них не окупятся минимум в ближайшие 20 лет. Они оценивали капитальные и операционные затраты в сети в этом диапазоне только для городов с населением более 1 млн человек в 723,3 млрд руб. до 2030 года. Затраты на развитие 5G в России оценили более чем в ₽1 трлн Это приведет к увеличению кредитного портфеля и снижению дивидендов операторов в будущем С 2021 по 2027 год совокупные затраты операторов на развитие связи 5G могут достигнуть 1,1 трлн руб., подсчитало АКРА. https://www.rbc.ru/technology_and_media/20/01/2021/6006d49b9a794726acf2482c
milstar: Правительство утвердило диапазон частот, на которых будут работать 5G-сети в России (4,4–4,99 ГГц) В конце января 2024 года правительство утвердило диапазон частот, на которых будут работать 5G-сети в России. Речь идет о полосе 4,4–4,99 ГГц, которая будет применяться в городах и густонаселенной местности. Опрошенные «Известиями» эксперты и участники рынка отмечают, что у диапазона 4,4–4,99 ГГц много ограничений. Например, вендоры из других стран хоть и выпускают для него базовые станции 5G, но доля таких поставщиков относительно мала. При этом есть шанс, что это проблема не отразится негативным образом на России, поскольку в стране будут использовать только отечественное оборудование. Pexels По техническому стандарту 3GPP к диапазону 4,4–4,99 ГГц относится полоса n79 (4400–5000 МГц). Ее поддерживают, в частности, смартфоны серий iPhone 13, 14 и 15. Зато глобальные модели Samsung Galaxy S24 в этом частотном сегменте не работают. Утверждённый диапазон активно используется в Китае, так что с устройствами для рынка КНР, скорее всего, проблем не будет. Как сообщил изданию специалист по частотному планированию сотовых сетей, благодаря данному решению диапазон 4,4–4,99 ГГц можно будет распределять между мобильными операторами. Однако сначала властям и бизнесу придется провести конверсию радиочастотного спектра. Речь идет о его отчистке от оборудования, которое несовместимо с сотовой связью. Также необходимо определить условия распределения частот, включая правила проведения конкурса по их предоставлению той или иной компании.
milstar: n general, the nominal output power has to be defined by the cell size and the required data rate at the cell edge. Nevertheless, assuming that a 3.5GHz 5G antenna has between 22 dBi and 24 dBi antenna gain, ensures that most of the additional free air loss is compensated (3.5GHz has ca. 6-9 dB additional propagation loss compared to 1.8 GHz plus 5 dB extra building penetration loss). To keep the power density per MHz similar to LTE systems, the 100MHz 3.5GHz spectrum will require 5x 80 W, which is not easy to be achieved. 5G trials need to define a realistic output power trade-off between coverage, power consumption, EMF limits, and performance. For 100MHz bandwidth, typically 120W RF output power distributed over the available TRX paths shall be used. This, in relation to the available bandwidth, is significantly lower than for LTE (80W/20MHz). However, the uplink with the fixed user equipment output power of 23dBm (20mW) will be anyway the limiting factor. User equipment output power will be limited to 23dBm. This is also related to how many transmitting paths are to be assumed. In a typical 5G configuration, the UE has to support 4Rx diversity as a minimum. https://5ghub.us/5g-transmit-power-and-antenna-radiation/
milstar: Технологии беспроводной передачи данных Wi-Fi для доступа к интернету на воздушном, морском и наземном транспорте в России прорабатываются на уровне Минцифры. Как говорится в ответе замминистра Дмитрия Угнивенко главе комитета Госдумы по труду, соцполитике и делам ветеранов Ярославу Нилову (есть у «Известий»), Госкомиссия по радиочастотам планирует рассмотреть этот вопрос на заседании в IV квартале 2024 года. Речь идет о радиочастотах Ku- и Ka-диапазонов (первый из них использует полосу от 12 до 18 ГГц, а второй — 26,5 до 40 ГГц). «Принятие данного решения ... позволит осуществлять высокоскоростной доступ к интернету на подвижных объектах, включая воздушные, морские и речные суда, наземный транспорт на всей территории РФ», — говорится в документе. Для этого предлагают использовать перспективные спутниковые системы «СКИФ» и «Экспересс-РВ», которые разрабатывает «Роскосмос» в рамках федерального проекта «Комплексное развитие информационных технологий («Сфера») госпрограммы «Космическая деятельность России». Также планируют задействовать проект ООО «Бюро 1440» по созданию низкоорбитальной спутниковой группировки широкополосной передачи данных. Как писали «Известия», на создание группировки из 383 спутников государство может выделить 116 млрд рублей. ООО «Бюро 1440» заключило соглашение о сотрудничестве с РЖД и «Аэрофлотом», говорится в документе. Как отметили в РЖД, сегодня пассажиры уже могут воспользоваться Wi-Fi в скоростных поездах дальнего следования «Сапсан» и «Ласточка», а также в фирменных поездах «Федеральной пассажирской компании». Кроме того, поэтапно расширяется пул поездов с доступом в интернет через Wi-Fi. Ярослав Нилов пояснил «Известиям», что ранее направил обращение в министерство с вопросом о возможных сроках появления Wi-Fi на транспорте в России, так как это очень удобная в дороге функция, которую ждут россияне. полноценно развивать технологию Wi-Fi на транспорте можно будет, после завершения строительства спутниковой группировки. Это примерно 2028 год, уточнили в министерстве.
milstar: With wireless communication standards such as LTE and 5G, the emphasis on higher data rates and spectral efficiency has driven the wireless original equipment manufacturers (OEMs) to adopt new transmission formats such as orthogonal frequency division multiplexing (OFDM). However, these signals, with large fluctuations in their envelopes, are especially vulnerable to nonlinear power amplifier (PA) distortions due to their high peak-to-average power ratios (PAPR). With this high PAPR signal, a PA nonlinearity can produce substantial signal distortions that increased bit error rates (BERs) and decreased signal-to-noise ratio as a result. This article reviews PAPRs, where they originate, how they can break down the RF components of the transmit line-up, and how to get rid of them or at least mitigate their effects on the signal chain. Introduction The newer modulation formats, such as OFDM, and various forms of quadrature amplitude modulation (QAM) have large fluctuations in their signal envelopes. This creates a high PAPR in the signal. Playing a high PAPR signal on a nonlinear PA generates spectral regrowth. Spectral regrowth refers to new frequencies that are caused by gain compression and were not in the original input. The high PAPR causes in-band distortion, which degrades the BER performance of the entire system. We will discuss a solution to help find the right system trade-off between efficiency and linearity using digital predistortion (DPD) and crest factor reduction (CFR) engines. OFDM Modulation—Everyone Is Doing It! In LTE and 5G systems, carrier aggregation, which is transmitting several carriers in parallel, is used to increase bandwidth and data rate. These networks leverage OFDM modulation, a very proficient and widely used multicarrier transmission technique that enables better spectral efficiency and reduces the impact of multipath reflections on the receiver’s ability to demodulate the signal. With OFDM, the final waveform is an orthogonal summation of subcarriers that carry information, where each subcarrier has its own center frequency and modulation scheme. In the time domain, sometimes the peaks of these subcarriers can align to produce an aggregate large OFDM waveform peak. A unique feature of OFDM is that the subcarrier waveforms are orthogonally combined such that the null (or zero amplitude) of one subcarrier coincides with the peak of other subcarriers as shown in Figure 1. This provides a relatively efficient use of the channel bandwidth, resulting in improved spectral efficiency compared to traditional single-carrier modulation. Figure 1. Multicarriers OFDM subcarriers waveforms. https://www.analog.com/en/resources/technical-articles/simplifying-your-5g-base-transceiver-station-transmitter-line-up-design-and-evaluation.html
milstar: to : https://guraran.ru/prezidiym_raran.html to : https://viek.ru/editorial_board.html copy for information to .... re:2- Сравнительний технико-экономический анализ покрытия 5G на примере 1 квадратного километра Лондона 700 MHz (macro network), 3.5 GHz (micro network) and 24–27.5 GHz (hot spots) – together with 802.11ac access points. / инженера радиосетей - резерв армии также как летчики и техперсонал гражданской авиации и моряки и техперсонал коммерческого флота .Есть много общих радиоэлектронных компонентов и производственных мощностей . Бюрократия и заказчики разные- МО и Минцифры, радиосети. Заказ явно многотриллионный ... Capacity and costs for 5G networks in dense urban areas A techno-economic analysis of the 5G enhanced mobile broadband scenario in dense urban areas has been accomplished by radio capacity modelling of probable 5G technologies within a 1 km2 grid representing central London. Different density networks were modelled at 700 MHz (macro network), 3.5 GHz (micro network) and 24–27.5 GHz (hot spots) – together with 802.11ac access points. Only mmW technology offers almost a ×1000+ increase in capacity. Indoors the situation is different in that mmW technology does not penetrate through walls and would require one AP per room to be used indoors. 700 MHz penetrates well into most buildings but the limited bandwidth available and the cost of building new macro BSs restricts the maximum capacity that can be added to 0.6 Gbps/km2. 3.5 GHz technology penetrates poorly into buildings and can add only 25 Gbps/km2 (compared to 30 Gbps/km2 outdoors). Only 802.11ac can provide significant indoor capacity with 90 Gbps/km2 added with 1664AP/km2 deployed in a 3 × 160 MHz pattern. Table 4 summarises the situation. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-com.2018.5505 -------------------- Using mmWave, Verizon could boast insanely fast speeds on its network, easily hitting 1Gbps and peaking at 4Gbps under ideal conditions. In early 2020, Verizon was the fastest 5G carrier on the planet, with an OpenSignal report showing average 5G download speeds of 506Mbps — double that of the second place contender, South Korea’s LG U+. Today, this level of Verizon’s 5G coverage is what’s known as 5G Ultra Wideband. https://www.digitaltrends.com/mobile/5g-nationwide-vs-5g-ultra-wideband/ The only problem is that while mmWave may be fast, it also has an extremely short range — a single mmWave transceiver can only cover an area about the size of a city block. As a result, Verizon’s 5G service was only available to around 1% of its customers: those who lived or worked in major urban centers like downtown Chicago. Verizon customers in the rest of the U.S. never saw the 5G symbol appear in their phone’s status bar. According to a 2017 Qualcomm research paper, providing a 1 square kilometer of reliable mmWave 5G coverage in a densely populated city requires approximately 130 mmWave transceivers. -------------------------------------------------------------------------------------------------------------------------- Based on those numbers, covering only 95% of New York City would require nearly 60,000 individual mmWave towers. ----------------------------------------------------------------------------------------------------------------------------- This limited range was a problem for Verizon, particularly since its rivals weren’t standing still. By the summer of 2020, T-Mobile 47 mbps was boasting 5G coverage in all 50 U.S. states — including Alaska — and AT&T wasn’t far behind. These networks may have been slower than Verizon’s ultrafast mmWave service, but at least customers on those carriers got to see the coveted 5G icon light up on their phones. ------------------- Challenges of 5G deployment, according to Zhengmao Li, EVP China Mobile (biggest operator on the world). 1. 5G needs 3 X base stations for same coverage as LTE due to higher frequencies 2. Power consumption of a 5G base staion is 3 X LTE 3. 5G base station costs 4 X price of LTE https://www.lightreading.com/5g/power-consumption-5g-basestations-are-hungry-hungry-hippos --------------- 5G mmW Mixed-Signal and RF Front-End Solution 24 GHz to 48.2 GHz SEPTEMBER 2022 https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/5g-mmw-brochure.pdf ---------------- Как говорилось в совместном докладе МТС, «МегаФона», «ВымпелКома» (бренд «Билайн») и «Ростелекома» (владеет Tele2 в России), если им придется строить 5G в диапазоне 4,8–4,99 ГГц, затраты на них не окупятся минимум в ближайшие 20 лет. Они оценивали капитальные и операционные затраты в сети в этом диапазоне только для городов с населением более 1 млн человек в 723,3 млрд руб. до 2030 года. Затраты на развитие 5G в России оценили более чем в ₽1 трлн Это приведет к увеличению кредитного портфеля и снижению дивидендов операторов в будущем С 2021 по 2027 год совокупные затраты операторов на развитие связи 5G могут достигнуть 1,1 трлн руб., подсчитало АКРА. https://www.rbc.ru/technology_and_media/20/01/2021/6006d49b9a794726acf2482c --------------------------- 2024 В настоящее время в Москве работают 19 зон пятого поколения. На текущий момент в российских сетях 5G функционируют 14 вышек, расположенных в разных точках страны: Москва — 4 шт. Работают в тестовом режиме и общественно доступном режиме; Санкт-Петербург — 4 шт. Работают в тестовом режиме; Казань — 2 шт.; Набережные Челны — 1 шт. Работает в тестовом режиме (расположена на КамАЗе); Екатеринбург — 1 шт. Работает в тестовом режиме; Томск — 1 шт. Работает в тестовом режиме; Абакан — 1 шт. Работает в тестовом режиме. https://www.kp.ru/expert/elektronika/5g-internet/ ------------ 13/04/2023 Сколтех, российский разработчик передовых технологий беспроводной связи, представил первую в РФ отечественную базовую станцию для сетей 5G. Решение включает в себя программное обеспечение, а также образцы модулей, которые будут производиться в нашей стране индустриальным партнёром проекта по заявкам операторов и других заказчиков. Первая партия оборудования, предназначенная для комплектации пилотной сети, уже готова. Объём выпуска базовых станций до конца 2023 года достигнет 100 штук. https://www.skoltech.ru/2023/04/5g-sdelano-v-skoltehe/ ---------------------- институт провел исследования, которые позволили выявить частоты в диапазонах 4,8-4,99 ГГц и 24-27,5 ГГц для тестирования и организации пилотных зон 5G, рассказал Иванов. Диапазон 4,8-4,99 ГГц признан решением Госкомиссии по радиочастотам приоритетной полосой для развертывания сетей 5G в России, отметил он. Представитель Минцифры сообщила Forbes о заинтересованности операторов в более широком диапазоне — 4,4-4,99 ГГц. «Именно в нем создаются все пилотные зоны», — уточнила она. ----------------- планируемые на ближайшие годы производственные мощности в России должны будут составлять около 10 000-20 000 базовых станций 4/5G в год при суммарной годовой потребности 30 000-100 000 базовых станций. То есть это производство пока не будет готово для того, чтобы произвести все необходимое количество базовых станций для всех операторов «большой четверки», с их общим парком радиоэлектронных средств более 1 млн единиц, констатирует Виталий Шуб. ----------------- Ericsson’s AIR 6468, which the company claims is "the world's first 5G NR radio", uses 64 transmit and 64 receive antenna Massive MIMO for 5G networks What is a Massive MIMO solution? February 2023 https://www.ericsson.com/49318c/assets/local/reports-papers/white-papers/massive-mimo-for-5g-networks.pdf ---------------------- The advantage of a MIMO network over a regular one is that it can multiply the capacity of a wireless connection without requiring more spectrum. Reports point to considerable capacity improvements, and could potentially yield as much as a 50-fold increase in future. ------------- Wideband Receiver for 5G, Instrumentation, and ADEF https://www.analog.com/en/resources/technical-articles/wideband-receiver-for-5g-instrumentation-and-adef.html https://www.analog.com/en/products/AD9213.html 5G RF Transceiver | 5G Transceiver AD9375 Analog Devices This application note covers 5G Transceiver basics.It mentions 5G RF Transceiver AD9375 from Analog Devices Inc. 5G RF Transceiver is used as transmitter and receiver using 5G frequency bands. It mentions other manufacturers or vendors of 5G transceivers. https://www.rfwireless-world.com/ApplicationNotes/5G-transceiver.html ----------- https://www.ericsson.com/en/blog/2021/2/how-to-build-high-performing-massive-mimo-systems https://studylib.net/doc/25743887/ericsson-air6468-description -------------- NEC launches two new UNIVERGE RV1000 series private 5G base station models in Japan - Ideal for small-scale networks - Millimeter-wave integrated UNIVERGE RV1300 364×335×118 8.5kg 28.2-29.1GHz (400MHz)@5G 2,580~2,590MHz (10MHz)@4G EIRP 400mW@5G 250 mW/RF terminal × 2@4G Tokyo, Japan, January 20, 2022 - NEC Corporation (NEC; TSE: 6701) announced today the launch of two new models of all-in-one integrated compact base stations from the UNIVERGE RV1000 series. These models include base station radio units (RUs) and baseband units (CU: Central Unit/DU: Distributed Unit) in a single enclosure, primarily for small-scale networks. NEC will begin sales of the standalone (SA) UNIVERGE RV1200 base station (hereinafter referred to as Sub6 integrated UNIVERGE RV1200), compatible with the 4.7GHz band, and the non-standalone (NSA) UNIVERGE RV1300 base station (hereinafter referred to as the millimeter-wave integrated UNIVERGE RV1300), compatible with the 28GHz band, from the first quarter of 2022 in Japan. https://www.nec.com/en/press/202201/global_20220120_02.html ------------ Use of advanced modulation is a first for FDD, partners say Samsung Networks and Qualcomm have used advanced modulation as defined in 3GPP Release 17 to boost downlink speeds by about 20% compared to the use of 256 QAM. The lab test, conducts at Samsung’s research and development lab in Korea, represents an industry first for the use of 1024 QAM in an FDD band (2.1 GHz) and for 1024 QAM in both FDD and TDD (3.5 GHz) spectrum, according to the partners. Samsung noted that 256 QAM is in widespread commercial use in mobile networks already, to transmit data more efficiently; 1024 QAM offers the promise of allowing operators to squeeze even more performance and capacity out of their spectrum resources. The test relied on 20 megahertz of spectrum and reached downlink speeds of 485 Mbps, which the companies noted is near the theoretical gain of 2,024 QAM. --------------- RF Front End Module Architectures for 5G Florinel Balteanu Skyworks Solutions Inc., CA92617, USA https://d2mkdgs306yypx.cloudfront.net/-/media/SkyWorks/Documents/Articles/IEEE_BCICTS_201911.pdf --------- As of May 2022, China has built nearly 1.6 million 5G base stations, becoming the first country in the world to build a large-scale 5G network based on the independent networking model. In 2022, China will add 887,000 new 5G base stations. The number of 5G base stations has reached 2.312 million, accounting for more than 60% of the world's total. On July 23, 2022, the State Council Information Office held a regular policy briefing of the State Council. He Yaqiong, director of the Department of Consumer Products Industry of the Ministry of Industry and Information Technology, said that the "dual gigabit" network represented by gigabit optical network and 5G is a new type of network. The important support of infrastructure is also a key link in the development of smart home appliance applications. By the end of 2022, 2.312 million 5G base stations will be built and opened. number of antennas configured in the base station of the existing 4G system is small (generally no more than 8), and the performance gain of MIMO is greatly limited. In response to the shortcomings of traditional MIMO technology, Marzetta of Bell Laboratories in the United States proposed the concept of Massive MIMO (Massive MIMO or Very Large MIMO) in 2010. In a massive MIMO system, the base station is equipped with dozens to hundreds of antennas, which is 1 to 2 orders of magnitude more than the number of antennas in the traditional MIMO system; the base station makes full use of the spatial freedom of the system to serve several users in the same time-frequency resource. ------------ The global 5G base station equipment market is projected to grow at a CAGR of 17.86% to reach US$43.273 billion by 2028, from US$16.144 billion in 2022. For example, the total cost tag for 5G implementation in the EU could go over €400 billion. The EU allocated more than €4 billion in funding for 5G projects between 2014 and 2020. The EU’S policy framework related to 5G is composed of both legally binding (hard law) and non-binding (soft law) frameworks. The following figure shows the EU’s policy documents and key targets relating to the deployment and security of 5G. Macrocell A macrocell is a cellular base station that sends and receives radio signals through large towers and antennas. Cell towers, in particular, can range anywhere from 50 to 200 feet tall and provide cellular coverage for miles. The U.S. currently has about 210,000 macrocells across the country, according to the Wireless Infrastructure Association. Small cell A small cell is another type of cellular base station that is physically small -- around the size of a pizza box -- and transmits radio signals. The goal of small cells is to boost wireless network connectivity in specific areas, as small cells can enable mmWave frequencies with high-speed broadband connectivity. The U.S. plans to deploy five to 10 times more small cells than macrocells, according to industry reports. Femtocell A femtocell is a wireless access point used to enhance indoor cellular connectivity. Unlike other cellular connectivity options, femtocells connect back through the internet to provide in-home or office cellular connectivity. Femtocells look and operate like routers, and users can place femtocells near their current network hardware setups. Femtocells are accessible to anyone who wants to purchase one. https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
milstar: The Sprint 5G Non-Standalone network in the 2.5 GHz band was using massive 128-antenna MIMO equipment to be able to operate 4G at the same time. https://5gobservatory.eu/market-developments/5g-services/
milstar: https://www.huawei.com/en/news/2024/2/5ga-practices-multipath Practice 1: Extremely large antenna array (ELAA) is upgraded from single-band to multi-band on 64T MetaAAU. With native dual-band converged antenna elements, the 64T MetaAAU supports high-band and low-band co-coverage to realize ubiquitous 5 Gbps. In China, the Middle East, and many other places, MetaAAU has been implemented for multi-carrier TDD capability verification, with multiple bands being combined, such as 3.5 GHz, 2.6 GHz, and 4.9 GHz, demonstrating its ability to simplify site construction while providing continuous 5 Gbps. Practice 2: FDD ultra-wideband is upgraded to support all bands. The new Hepta-band RRU supports 7 bands across 700 MHz to 2.6 GHz, enabling existing 100 MHz of bandwidth to be reused for building 5-Gbps basic experience networks. Huawei provides FDD 8T8R and Massive MIMO products that support native GHz ultra-high bandwidth, allowing for maximum FDD spectral and energy efficiencies. In Cambodia, the triple-band 8T8R solution improves coverage by 6 dB and reduces power consumption by 30% compared with 4T6S. In Malaysia, triple-band Massive MIMO increases capacity by 4 times and traffic by 1.5 times for 4G, while allowing for a 7-times capacity boost for future 5G. Practice 3: mmWave provides native ultra-high bandwidth, and is thus key to 5.5G 10 Gbps. Huawei provides the industry's largest mmWave AAU with more than 2,000 antenna elements. This AAU supports a beam density that is four times that of competition modules, breaking through mmWave coverage bottleneck. In China, Finland, and a number of other countries, mmWave has shown effective for delivering a smooth, stable experience of around 10 Gbps in mobility scenarios. Practice 4: LampSite X can work on both sub-6 GHz and mmWave bands, meaning it can support a native ultra-high bandwidth of up to 1.6 GHz. This makes it key to indoor 10 Gbps. In Hong Kong, the LampSite solution has allowed the development of a 10 Gbps business area where consumers can enjoy diverse AR shopping and navigation experiences. This has stimulated network traffic to grow by 23%, while bringing merchants more than HK$3.5 million in additional revenue. Practice 5: Huawei has brought "0 Bit 0 Watt" to 5.5G full-series equipment to increase energy efficiency by 10 times based on "Native Green" architecture, hardware, and software. In idle mode, the power consumption is below 10 W and second-level wakeup is supported. In active mode, experience is guaranteed with 30% lower energy consumption. "0 Bit 0 Watt" has been verified on the live networks in Zhejiang, China, displaying all-day energy saving of more than 40%, with power consumption in days reduced by 30% and that at nights falling below 10 W. Practice 6: With MAGICSwave, Microwave 2T is supported in all scenarios, with a maximum capacity of 50 Gbps, facilitating the evolution to 5.5G. Again, in Zhejiang, China, with microwave CA 2T, an operator was able to deploy 5G backhaul to an isolated island in just two days. In Nigeria, the long-haul microwave solution required 50% less hardware across all scenarios, allowing a significant reduction in tower load for a 30% TCO saving.
milstar: Line-Of-Sight (LOS) propagation. Compared to 2.6 GHz mid band spectrum, 28 GHz and 39 GHz bands are subject to 21 dB and 24 dB higher LOS loss consecutively, as shown in Figure 3. Frequency-dependent diffraction and reflection losses in Non-Line-Of-Sight (NLOS) conditions will add to these losses. Rain attenuation. Depending on the rainfall intensity (mm/h), rain attenuation can be significant for mmWave signals. Based on the FCC’s Office of Engineering & Technology Bulletin on Millimeter Wave Propagation [4], rain attenuation ranges from 0.05 dB/km to 25 dB/km (@28 GHz) and 0.08 dB/km to 35 dB/km (@39 GHz). This translates to up to 2.5 dB (@28 GHz) and 3.5 dB (@39 GHz) of rain attenuation for every 100 meters with rainfall intensity of 150 mm/h. Foliage attenuation. Based on the FCC bulletin referenced above, foliage attenuation could be significant, depending on the depth of the foliage. At 10-meter foliage depth, 28 GHz band foliage attenuation is estimated to be 17 dB (11 dB higher than mid-band), whereas 39 GHz band suffers 2 dB additional attenuation at the same foliage dept https://www.gsma.com/solutions-and-impact/technologies/networks/wp-content/uploads/2022/10/FINAL-5G-mmWave-Deployment-Best-Practices-Design-White-Paper-November-2022.pdf Building penetration loss. Higher bands are subject to higher Building Penetration Loss (BPL). BPL is typically higher in commercial buildings than residential, due to the building materials used and window isolation techniques. Based on 3GPP TR 38.900 [13], the 28 GHz band is subject to 6 dB to 14 dB higher BPL over 2.6 GHz, whereas 39 GHz band is subject to 8 dB to 17 dB higher BPL, as shown in Figure 5 12 Beamforming gain. Beamforming can orient the beam in the direction of the user equipment without mechanical rotation. A larger number of antenna elements enables a sharper beam and, consequently, higher gain. With 256 antenna elements on the base station, the theoretical beamforming gain is 24 dB. On the user equipment, with four antenna elements, the theoretical beamforming gain is 6 dB. In practice, the theoretical gain may not be realised due to beam shape loss and channel estimation errors, thus leading to a loss of about 2.5 dB. Therefore, the practical mmWave link budget advantage over 2.6 GHz due to beamforming gain is as follows: • Base station transmit antenna gain: 24-2.5 = 21.5 dB advantage • User equipment transmit antenna gain: 6-2.5 = 3.5 dB advantage The mmWave theoretical antenna and beamforming gains (as shown in Figure 7), will offset the propagation and other losses discussed above. There is a view that mmWave 5G is the true 5G because its high throughput and low latency can greatly improve the user experience. But mmWave propagation characteristics mean the performance in FR2 bands degrades significantly more than in FR1 bands at distances of more than 1km. As discussed earlier, the free space path loss is more than 20 dB compared to FR1 signals at the same distance, even in a LOS scenario (as shown in Figure 3). Although shipments of 5G FWA devices (devices supporting 4G and 5G) doubled in 2021 to 3.6 million units, 4G-only shipments made up 84% (19.1 million units) of all FWA shipments in 2021. Of the 5G FWA shipments, 160,000 were mmWave-based devices, jumping from 130,000 in the previous year. The GSA forecasts shipments of 5G FWA devices will double again to 7.6 million units in 2022 (see Figure 31), representing more than a quarter of volumes, while 4G-only devices are expected to have a modest gain (~14%). Furthermore, in the GSA survey, 88% of respondents indicated that they have, or plan to introduce, mmWave 5G products in the next few years (see Figure 32) https://www.gsma.com/solutions-and-impact/technologies/networks/wp-content/uploads/2022/10/FINAL-5G-mmWave-Deployment-Best-Practices-Design-White-Paper-November-2022.pdf
milstar: Based on analysis by Ookla® of Speedtest Intelligence® data average download monthly 5G results from defined cities for Q4 2019 – Q3 2020. Ookla trademarks used under license and reprinted with permission. 5G mmWave delivers unparalleled user experience 3 Gbps in peak download speed and significant gains in average throughput observed by 5G mmWave users https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/deploying_mmwave_to_unleash_the_full_5g_potential_web.pdf Testing 5G NR mobile mmWave for indoor enterprises Using commercial equipment 1 Coverage simulation based on MAPL (maximum allowable path loss) analysis with ray tracer propagation model and measured material and propagation loss; minimum 0.4/0.1 bps/Hz for downlink/uplink data and control; 2 Using 400 MHz DL bandwidth 28 GHz gNodeB ▪ 1-sector; ~20ft. height ▪ 400 MHz bandwidth View from building entrance Achieving Gigabit speeds even in NLOS View from gNodeB Achieving significant coverage at 28 GHz1 • Single sector provides solid coverage in the lobby, atrium, and part of the auditorium • Significant NLOS coverage behind the gNodeB, including the 2nd and 3rd floor Extreme capacity for enterprise use cases • Downlink median burst rate2 of 3.1 Gbp
milstar: Figure 3: Example cellular base station in Australia with 3G, 4G, 5G mid-band and 5G mmWave. The 5G mmWave antenna is the small white box https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/gsma-5GmmWave-guide-a-resource-for-operators.pdf The typical distance between 5G mmWave small cells depends on the surrounding environment, the type of 5G mmWave service being provided and the position of the antenna. For example, for 5G mmWave mobile phone and device connections in urban areas, the separation could be between 200m and 400m. As another example, 5G mmWave fixed wireless services may work over 1km or more 5G mmWave signals don’t pass through objects, such as buildings, trees, and windows, as well as those in lower mobile frequencies. 5G mmWave signals may just reach a short distance into a house or apartment, through a window, if there is line of sight to a 5G mmWave base station. The ability of radio signals to travel through walls and ceilings depend on the construction material, the thickness of the structure (for example wall thickness), the angle of the radio signal and the signal frequency [5], [6]. Different building materials reflect or absorb different proportions of the radio signals. The building structure itself can also influence the received signal; sharp corners and flat structures can cause the signal to bounce around. The same signal reaching the receiver via different paths will cause interference and result in lower quality reception. External or window mounted antennas are typically used to provide a 5G mmWave connection to homes and apartments. This external antenna can then be connected to an indoor antenna, which then enables devices inside the building to get online
milstar: BELLEVUE, Wash. — December 6, 2023 T-Mobile (NASDAQ: TMUS) announced today it achieved another 5G U.S. first in a test that leveraged 5G standalone millimeter wave (mmWave) on its production network. Working with Ericsson and Qualcomm Technologies, Inc., the Un-carrier aggregated eight channels of mmWave spectrum to reach download speeds topping 4.3 Gbps without relying on low-band or mid-band spectrum to anchor the connection. T-Mobile also aggregated four channels of mmWave spectrum on the uplink, reaching speeds above 420 Mbps. https://www.t-mobile.com/news/network/t-mobile-revs-up-millimeter-wave-with-5g-standalone
milstar: TABLE 1 Penetration Losses of Electromagnetic Signals in Different Frequency Bands in Different Materials (dB) [10] --------------- For the street scenario, the main form of the mmW base station is the street station. The building area model as shown in Fig. 4 is constructed, where the deployment locations of mmW base stations are marked in red. The simulation results in Fig. 5 show that in the micro base station scenario in a cell, the cell can be fully covered by the street-level deployment (100 m ×100 m), and the average downlink throughput of 800 Mbps can be realized for a single user of the cell. A higher capacity of the cell can be achieved by beamforming combined with massive multi-user, multi-input, multi-output (MU-MIMO) technology. Another application scenario of mmW base stations is the indoor scenario with high human traffic (e.g., stadiums and airports). Fig. 6 shows the simulation result of the downlink throughput of a stadium. As can be seen, for a stadium with a size of 100 m ×60 m, excellent coverage can be achieved by using 690 m2/station, i.e., a total of eight stations. The simulation results demonstrate that the average downlink and uplink throughputs are greater than 1 Gbps and 300 Mbps, respectively. https://ieeexplore.ieee.org/document/9187411 SECTION V. Performance Tests of Commercial mmW Base Stations The existing network test is conducted on the basis of commercial base stations and terminals (Fig. 10), in which the mmW base station has an operating band of 26 to 28 GHz, the maximum EIRP of 55 dBm, 8 RF chains, 512 antenna arrays, and 64 QAM as the highest modulation mode supported by uplink and downlink. The terminal uses the WNC Pocket 5G Router mmW R2 device, which operates at the frequency range of 26-28 GHz, with a total EIRP of 23 dBm. The number of RF chains is two, and the number of antenna arrays is eight; the uplink and downlink supports the highest modulation method 64QAM. Because mmW base stations have not been deployed on a large scale in a field test, the test stations and the actual test environment are severely limited. As a result, only the evaluation items presented in Section 2 can be partially validated. A. Performance Tests in Outdoor Scenarios Fixed-point tests, environmental tests, and handover tests are performed in outdoor scenarios. Tests are conducted based on two different single sites, respectively, which are the light pole at the intersection of Fangzhou Road and Nanxieyu Street and the pylon in Songzejiayuan District VI in the city of Suzhou, as shown in Fig. 10. The main outdoor fixed-point tests are the remote test and the wrap-around test along the normal direction of the antenna array. Due to the limitations of the actual conditions, no fixed-point test is conducted in the vertical plane. The downlink remote tests along the normal direction of the antenna array are carried out by using base stations with different powers. As the terminal becomes increasingly remote along the normal direction, the RSRP, signal and interference/noise ratio (SINR), and DL throughput are tested and recorded at various points along the direction. Due to traffic restrictions, only the walking speed is used to make the UE remote. The test results are shown in Fig. 11. The remote distances of the 40 dBm and 55 dBm base stations are approximately 210 m and 240 m, respectively. The peak rate on the test path of the 55 dBm base station is approximately 2.1 Gbps. It can be seen in the figure that as the EIRP of the active antenna unit increases, the coverage performance is improved, and the downlink rate increases. The test result with 52 dBm is similar to that with 55 dBm, while all indicators of the 40 dBm base station are relatively poor, verifying that the coverage capability of a base station can be enhanced by increasing EIRP. However, as EIRP increases, the coverage capability of base stations tends to stabilize. As shown in the figure, when the remote distance is approximately 190 m, the downlink throughput drops rapidly, which is mainly caused by the uplink limitation, as verified by the uplink remote test. The test results have found that the EIRP of base stations deployed indoors and outdoors needs to be higher than 31 dBm and 52 dBm, respectively, to achieve good performance in terms of coverage range and throughput. The indoor scenarios are rich in refraction and scattering paths, and the additional loss is less than 3 dB when the UE is not fully obstructed. Field measurement results are of great importance to the design and actual deployment of mmW base stations.
полная версия страницы