Форум » Дискуссии » РЛС ВМФ » Ответить

РЛС ВМФ

milstar: 3 oct 2018 Raytheon won. Lockheed Martin – lost Northrop Grumman – lost Raytheon builds the AN/TPY-2 X-band radar used by the land-based THAAD missile system, the 280 foot high X-band array on the floating SBX missile defense radar, and the large land-based ballistic missile Upgraded Early Warning Systems like the AN/FPS-108 Cobra Dane and AN/FPS-115 PAVE PAWS. On the S-band side, the firm builds the S-band transmitters for Lockheed’s SPY-1 radar on board existing American destroyers and cruisers. Unsurprisingly, Raytheon personnel who talked to us said that: “…leveraging concepts, hardware, algorithms and software from our family of radars provides a level of effectiveness, reliability and affordability to our proposed AMDR solution… The challenge for all the competitors will be to deliver a modular design. The requirements demand that the design be scalable without significant redesign… A high power active radar system requires significant space not only for the arrays themselves but also for the power and cooling equipment needed to support its operation. Finding space for additional generators and HVAC plants can be quite challenging for a backfit application. That is why power efficiency is a premium for these systems.” ------------------ Lockheed Martin – lost Lockheed Martin stepped into the competition with several strengths to draw on. Their AN/SPY-1 S-band radar is the main radar used by the US Navy’s current high-end ships: DDG-51 Arleigh Burke class destroyers, and CG-47 Ticonderoga class cruisers. Lockheed Martin also makes the AEGIS combat systems that equips these ships, and supplies the advanced VSR S-band radar used in the new Dual Band Radar installations on board Ford class carriers Nor were they devoid of X-band or ballistic missile defense experience. Their L-Band AN/TPS-59 long range radar has been used in missile intercept tests, and is the only long range 3D Radar in the Marine Air-Ground Task Force. It’s related to the AN/TPS-117, which is in widespread service with over 16 countries. Then, too, the firm’s MEADS air defense technology demonstrator’s MFCR radar will integrate an active array dual-band set of X-band and UHF modules, via a common processor for data and signal processing. It was a strong array of advantages. In the end, however, it wasn’t enough. ================================================ The destroyer ‘Jack Lucas’ will join the Navy’s fleet in 2024. The vessel is modelled after the 73 Arleigh-Burke class destroyers already in service, but it will be a very different, more capable killer than its predecessors. ‘Jack Lucas’ gets its extra punch by adding Raytheon’s newly developed AN/SPY-6 air and missile defense radar. The Flight III is a major overhaul of the guided-missile destroyer. It required a 45 percent redesign of the hull, most of which was done to accommodate the AN/SPY-6 and its formidable power needs he AMDR-S provides wide-area volume search, tracking, Ballistic Missile Defense discrimination, missile communications and defense against very low observable and very low flyer threats in heavy land, sea, and rain clutter. In addition, the AMDR-X provides horizon search, precision tracing, missile communications, and final illumination guidance to targets. The AN/SPY-6 is 30 times more sensitive than its predecessor, its additional sensitivity supercharges the vessel’s capabilities in anti-air warfare and ballistic missile defense. April 17/14: SAR. The Pentagon releases its Dec 31/13 Selected Acquisitions Report external link. AMDR enters the SAR with a baseline total program cost estimate of $5.8327 billion, based on 22 radars. https://www.defenseindustrydaily.com/amdr-raytheon-wins-dual-band-05682/ For the Flight III Burke-class destroyer's SPY-6(V) AMDR will feature 37 RMAs. The new radar will be able to see targets half the size at twice the distance of today’s SPY-1 radar. The AMDR will have four array faces to provide full-time, 360-degree situational awareness. Each 14-by-14-foot face is about the same size as today’s SPY-1D(V) radar. =================== https://www.militaryaerospace.com/articles/2018/04/shipboard-radar-amdr-destroyers.html The AN/SPY-6(V) radar also is reprogrammable to adapt to new missions or emerging threats. It uses high-powered gallium nitride (GaN) semiconductors, ============================== distributed receiver exciters, adaptive digital beamforming, and Intel processors for digital signal processing. The new radar will feature S-band radar coupled with X-band horizon-search radar, and a radar suite controller (RSC) to manage radar resources and integrate with the ship’s combat management system.

Ответов - 99, стр: 1 2 3 4 5 All

milstar: CG 52 - CG 73 Later Ships: 1 AN/SPY-1B Multi-Function Radar (CG 59 - CG 64) S Band 1 AN/SPY-1B(V) Multi-Function Radar (CG 65 - CG 73) 1 AN/SPS-49(V)8 Air Search Radar основной локатор дальнего обзора ВМС США 845-942 mhz Размеры антенны 7.3 x 4.3 м Усиление антенны 28.5 dB Макс. дальность 460 км Ширина луча 3.3° (азимут) 11° (угол места) Точность по дальности 60 м Точность по азимуту 0.5° Обеспечивает обнаружение низколетящих целей при любом волнении моря, а также высотных пикирующих объектов https://ru.wikipedia.org/wiki/AN/SPS-49 4 AN/SPG-62 Illuminators X band 1 AN/SPS-55 Surface Search Radar 1 AN/SPS-64(V)9 Navigation Radar 1 AN/SPQ-9 Gun Fire Control Radar 1 AN/SQS-53C Hull Mounted SONAR (CG 65 - CG 73) 1 AN/SQQ-89 ASW System (CG 56 - CG 73) 1 AN/SQR-19B Towed Array SONAR (TACTAS) 1 AN/SLQ-32A(V)3 Electronic Warfare Suite https://www.navysite.de/cg/cg47class.htm

milstar: https://www.raytheon.com/news/feature/7_facts_about_amdr The system is built with individual ‘building blocks’ called Radar Modular Assemblies. Each RMA is a self-contained radar in a 2’x2’x2’ box. They stack together and are time- and phase-synchronized to form any size radar aperture to meet the mission needs of any size ship, making AMDR the Navy’s first truly scalable radar. For the DDG 51 Flight III destroyer, the SPY-6(V) AMDR will feature: 37 RMAs – which is equivalent to SPY-1D(V) +15 dB Meaning, SPY-6 can see a target of half the size at twice the distance of today’s radar 4 array faces to provide full-time, 360° situational awareness Each face is 14’ x 14’ – which is roughly the same dimension as today’s SPY-1D(V) radar AMDR Advantages Scalable to suit any size aperture or mission requirement Over 30 times more sensitive than AN/SPY-1D(V) in the Flight III configuration Designed to counter large and complex raids Adaptive digital beamforming and radar signal/data processing functionality provides exceptional capability in adverse conditions, such as high-clutter and jamming environments. It is also reprogrammable to adapt to new missions or emerging threats. All cooling, power, command logic and software are scalable This new S-band radar will be coupled with: ------------------------------------------------------------------- X-band radar – a horizon-search radar based on existing technology ---------------------------------------------------------------------------- The Radar Suite Controller (RSC) – a new component to manage radar resources and integrate with the ship’s combat management system https://www.raytheon.com/capabilities/products/amdr

milstar: SMART-L (англ. Signaal Multibeam Acquisition Radar for Tracking, L-band, многолучевой радар обнаружения и сопровождения фирмы Signaal диапазона L) — трёхкоординатная РЛС дальнего воздушного обзора с цифровой антенной решёткой производства Thales азмеры антенны 8,4 × 4 м Ширина луча по азимуту Ширина луча — 2,2° Диапазон частот 1–2 ГГц (L) Частота вращения 12 об/мин Масса — 7800 кг Поляризация — вертикальная http://www.electronics.ru/files/article_pdf/1/article_1438_671.pdf В дальнейшем был введён режим ELR (англ. Extended Long Range) с максимальной дальностью 480 км. Увеличение дальности достигнуто модернизацией программного обеспечения и не затронуло аппаратную часть. В ноябре 2006 года голландский фрегат F803 «Тромп» принял участие, совместно с ВМС США, в Тихом океане в двух учениях по ПРО. В ходе учений было продемонстрировано сопровождение баллистической ракеты ARAV-B (имитировала БР среднего радиуса действия) на дальности 200 км. Установленная на фрегате модифицированная РЛС SMART-L захватила цель ARAV-B сразу после подъёма ракеты над рельефом местности и удерживала сопровождение на большей части её траектории. На этом этапе РЛС показала способность засекать момент отделения головной части на высоте приблизительно 150 км


milstar: https://www.thalesgroup.com/en/worldwide/defence/smart-s-mk2-3d-medium-long-range-surveillance-radar E/F-band SMART-S Mk2 is the naval 3D air and surface surveillance radar operating in E/F-band. The multi-beam concept creates a long time-on-target resulting in excellent performance over the whole coverage. Pulse-Doppler processing enables fast target track initiation and stealth target detection, even in a cluttered environment. The use of solid-state transmitters extends the system reliability and allows for graceful degradation. The latter consisting of a mix of sea, land, islands, coastal rains and thunderstorms and a multiple of radar targets including small surface targets, helicopters and anti-ship missiles. Furthermore, SMART-S Mk2 is designed to match the full performance of surface to air missiles (SAM), such as the Evolved Sea Sparrow Missile (ESSM). SMART-S Mk2 is extremely suitable as the main air and surface surveillance radar in a one radar concept for light frigates, corvettes and ships such as Landing Platform Docks (LPD). http://www.navyrecognition.com/index.php?option=com_content&view=article&id=750

milstar: MART-S (Signaal Multibeam Acquisition Radar for Targeting) is an all-weather 3-D target indication and surveillance radar system intended for all types of naval vessels from fast patrol boats upwards. Its prime application is as the main sensor for data handling and weapon system control, and it has a very high performance in the presence of heavy clutter and electronic countermeasures. The equipment has been designed to cope with small high-speed anti-ship missiles with radar cross-sections down to 0.1 m2 and approach speeds of Mach 3+, which can be either sea skimmers or arriving from high angles of 70° or more. The SMART system operates in F-Band (the traditional of this frequency band name was S-Band, the designator is SMART-S therefore), where it offers an optimum balance between range, clutter rejection and antenna dimensions. It provides automatic detection, track initiation and track maintenance of both air and surface threats, with gapless coverage over a complete hemisphere from the sea surface upwards. It incorporates anti-clutter and electronic counter-countermeasures features such as multiple reception beams with ultra-low sidelobes in elevation and azimuth, a clutter analysis sensor, broadband transmission, pulse repetition frequency and radio frequency agility per burst and a jamming analysis sensor. SMART is designed to track 160 air targets and 40 surface targets simultaneously. The system comprises an antenna and three main below-decks units. The hydraulically stabilised antenna consists of a single-element wideband transmitting array, and a multi-element stripline receiving array. The ultra-low sidelobe phased array allows the formation of multiple receive beams in elevation. To ensure high sensitivity, preprocessing of the received signals takes place in the antenna unit itself. The output of the 16 antennas is fed to a digital beam forming network in which the 12 independent elevation beams are produced, after which Doppler Fast Fourier Transform processing and automatic tracking is carried out. The transmitter is based on a high power, pulse-to-pulse coherent Traveling Wave Tube. Integral identification friend-or-foe can be provided. beamwidth: 2 degrees   antenna rotation: 2.22 seconds (27 rpm.) http://www.radartutorial.eu/19.kartei/07.naval/karte007.en.html http://missiledefenseadvocacy.org/air-defense/air-defense-of-u-s-partners/allied-air-defense-sensor-systems/smart-s-radar-the-netherlands-and-others/

milstar: https://yandex.ru/search/?lr=178&text=rls%20poliment%20redut%20 В 2011 году отечественная судостроительная промышленность выполнила монтаж первого комплекса «Редут» на штатный носитель, которым стал корвет «Сообразительный» проекта 20380. Также для испытаний изготовили некоторое количество управляемых ракет 9М96. Весной следующего года в отечественных средствах массовой информации появились сообщения о скором начале испытательных пусков новых ракет с корабля-носителя. Предполагалось, что уже до конца 2012 года промышленность и флот завершат испытания нового ЗРК, что откроет ему дорогу к серийному производству и полноценной эксплуатации. Тем не менее, в силу различных причин программа испытаний с участием «Сообразительного» серьезно затянулась. Кроме того, возникла необходимость в проведении дополнительных тестовых запусков с использованием наземных стендов. В 2013 году первый комплекс 9К96-2 «Полимент-Редут», отличающийся от базового составом оборудования, был установлен на штатный носитель в лице фрегата «Адмирал флота Советского Союза Горшков» (проект 22350). Проверки комплекса второй модели планировалось начать сразу после доведения корабля-носителя до соответствующей степени готовности. Несколько лет назад ситуация с двумя ЗРК семейства «Редут» выглядела неоднозначно, однако, в целом, не давала особых поводов для беспокойства. Тем не менее, в дальнейшем стало ясно, что оба проекта столкнулись с самыми серьезными проблемами, которые могут помешать их быстрой и полной реализации. По тем или иным причинам, системы «Редут» и «Полимент-Редут» до сих пор не готовы к эксплуатации. Более того, проблемы с зенитными комплексами мешают началу службы кораблей-носителей, что уже привело к нескольким смещениям сроков их передачи. В контексте строительства и испытаний фрегатов проекта 22350 основным фактором, негативно сказавшимся на сроках выполнения работ, стали именно проблемы с зенитным комплексом «Полимент-Редут». В середине июля прошлого года СМИ сообщили о приостановке испытаний этого вооружения. Причиной приостановки стало текущее состояние проекта, а именно невозможность получения требуемых характеристик. Со ссылкой на неназванные источники в Военно-промышленной комиссии утверждалось, что имеет место неполучение требуемых характеристик ракет 9М96, 9М96Д и 9М100. Сообщалось, что последние на тот момент испытания ЗРК прошли в июне, но не дали ожидаемых результатов. Выявление очередных недостатков конструкции не позволило продолжить испытания без неудач. 10 августа – через несколько дней после сообщения о передаче документов – стало известно, что совет директоров НПО «Алмаз» принял решение сменить генерального директора предприятия. Место гендиректора Виталия Нескородова занял Геннадий Бендерский, ранее руководивший Лианозовским электромеханическим заводом. Согласно официальному сообщению пресс-службы предприятия, причинами смены гендиректора стали систематическое невыполнение поручений руководства концерна, упущения в работе и утрата доверия. В контексте строительства и испытаний фрегатов проекта 22350 основным фактором, негативно сказавшимся на сроках выполнения работ, стали именно проблемы с зенитным комплексом «Полимент-Редут». В середине июля прошлого года СМИ сообщили о приостановке испытаний этого вооружения. Причиной приостановки стало текущее состояние проекта, а именно невозможность получения требуемых характеристик. Со ссылкой на неназванные источники в Военно-промышленной комиссии утверждалось, что имеет место неполучение требуемых характеристик ракет 9М96, 9М96Д и 9М100. Сообщалось, что последние на тот момент испытания ЗРК прошли в июне, но не дали ожидаемых результатов. Выявление очередных недостатков конструкции не позволило продолжить испытания без неудач. В контексте строительства и испытаний фрегатов проекта 22350 основным фактором, негативно сказавшимся на сроках выполнения работ, стали именно проблемы с зенитным комплексом «Полимент-Редут». В середине июля прошлого года СМИ сообщили о приостановке испытаний этого вооружения. Причиной приостановки стало текущее состояние проекта, а именно невозможность получения требуемых характеристик. Со ссылкой на неназванные источники в Военно-промышленной комиссии утверждалось, что имеет место неполучение требуемых характеристик ракет 9М96, 9М96Д и 9М100. Сообщалось, что последние на тот момент испытания ЗРК прошли в июне, но не дали ожидаемых результатов. Выявление очередных недостатков конструкции не позволило продолжить испытания без неудач.

milstar: Единственный российский авианосец "Адмирал Кузнецов" в ходе модернизации получит на вооружение морскую зенитную ракетную систему большой дальности "Полимент-Редут", сообщил ТАСС источник в судостроительной отрасли. "Кроме "Панцирей" на корабле планируется установить системы противовоздушной обороны большой дальности - новейший комплекс "Полимент-Редут", - сообщил ТАСС источник. Сейчас на "Кузнецове" имеются только комплексы ПВО ближнего действия "Кинжал" и "Кортик". В концерне "Алмаз-Антей" (компания - разработчик "Полимент-Редута") не стали комментировать предоставленную источником информацию. Как сообщил ранее замглавкома ВМФ РФ Виктор Бурсук, работы на "Кузнецове" начнутся в мае, корабль получит новые ракетно-артиллерийские комплексы ближнего действия "Панцирь- М". По данным Бурсука, на корабле также будут установлены новые котлы и новые системы, обеспечивающие полеты, в частности, системы посадки, наблюдения, управления. Флот рассчитывает получить авианосец в боевой состав в 2021 году. Как уточнил ТАСС другой источник в судостроительной отрасли, из взлетно-посадочного оборудования на корабле заменят аэрофинишенры, радиомаячную группу и сигнальное оборудование, также на "Кузнецове" поменяют всю систему связи. При этом, отметил источник, "ударный ракетный комплекс "Гранит" на авианосце меняться не будет".

milstar: Sampson имеет две противоположно направленные решётки с 2600 элементами каждая, установленные на одной платформе. BAE Systems разрабатывала также модели с тремя, четырьмя и пятью решётками, включая решётку, направленную в зенит. Существует также модель с одной решёткой аналогичного размера, предназначенная для корветов, и под названием Spectar поставляющаяся на экспорт Каждая решётка содержит 2560 излучающих элементов на основе арсенида галлия мощностью 10 Вт каждый. Излучающие элементы сгруппированы в 640 приёмопередающих модулей. Каждый модуль содержит 4 излучающих элемента и 6-битовый контроллер амплитуды и фазы сигнала (64 градации сигнала по фазе и амплитуде), а также специализированную микросхему для связи с центральным компьютером, которая позволяет централизованно программировать каждый излучающий элемент. Связь с управляющим компьютером осуществляется по оптоволоконной сети со скоростью передачи 12 Гбит/с. Масса антенного поста составляет 4,6 т, скорость вращения — до 60 об/мин ================== Альтернативой вращающимся антенным решёткам являются радары типа AN/SPY-1, где 4 стационарных решётки расположены по квадрантам с интервалами 90° по азимуту. По мнению BAE Systems, высокая стоимость решётки, а также значительная масса и необходимость размещать её как можно выше над поверхностью воды делает такие решения менее эффективными. Кроме того, массированная атака с воздуха с одного направления перегружает одну из решёток радара с архитектурой типа AN/SPY-1, в то время как три остальные решётки не используются. ========================================================= С другой стороны, для вращающейся антенны требуется дополнительные двигатели и передаточные механизмы, а выход их из строя сильно ограничивает функциональность радара ================ автор постинга того же мнения ,но ========================= 1.разместить 4 вращающийся апертуры на достаточной высоте при наличии других систем в условиях ограниченного водоизмещения непростая задача 2. кроме того необходимо 2-3 диапазонная РЛС 900-1100 mhz 3100-3500 mhz 900-1100 mhz - лучший диапазон для обнаружения крылатых ракет на низкой высоте но требует размер апертуры 4 метра на 8 метров + 4 метра на 4 3100-3500 mhz и все это должно вращаться ? Какое водоизмещение должно быть у этого "фрегата" ? ============================== Две антенные решётки радара Sampson функционируют независимо друг от друга, что позволяет в случае необходимости работать с одной решёткой. Использование двух диапазонов (E и F) связано с разделением функций обзора и сопровождения целей. E 2-3 GHZ ,F 3-4 GHZ По сообщениям производителя, максимальная дальность радара составляет несколько сот километров и значительно превосходит 150-км максимальную дальность радара X-диапазона APAR. Сообщается также, что радар при хороших условиях распространения радиоволн способен обнаружить голубя (ЭПР 0,008 м²) на расстоянии 105 км Установки на кораблях HMS Daring с антенной РЛС Sampson Флаг Великобритании Эскадренные миноносцы типа 45 Водоизмещение 7500 тонн (стандартное) 8100 тонн (полное) Всего построено шесть эскадренных миноносцев этого типа, последний из которых вошел в состав флота 26 сентября 2013 года

milstar: The tactical difference is easier to understand by comparing the present American state of the art with the DBR approach. The US Navy’s DDG-51 Arleigh Burke Class AEGIS destroyers and CG-47 Ticonderoga Class cruisers currently form the high end of its naval air defense capabilities. They use 2-4 different radars in their work, which are combined into a common picture by the ships’ AEGIS combat system. The rotating AN/SPS-49 radar external link on the cruisers’ mast offers 2D (range and heading only) very long-range scans in the L-band. It serves as the primary air search radar aboard a wide array of ship types, from aircraft carriers to frigates, and is also used by CG-47 Ticonderoga Class cruisers. SPY-1 variants AEGIS operations (click to view full) AEGIS ships have a more effective radar at their disposal, however: the AN/SPY-1B/D/E passive phased array S-band radar can be seen as the hexagonal plates mounted on the ship’s superstructure. SPY-1 has a slightly shorter horizon than the SPS-49, and can be susceptible to land and wave clutter, but is used to search and track over large areas. It can search for and track over 200 targets, providing mid-course guidance that can bring air defense missiles closer to their targets. Some versions can even provide ballistic missile defense tracking, after appropriate modifications to their back-end electronics and radar software. The 3rd component is the AN/SPG-62 X-band radar “illuminators,” which designate targets for final intercept by air defense missiles; DDG-51 destroyers have 3, and CG-47 cruisers have 4. During saturation attacks, the AEGIS combat system must time-share the illuminators, engaging them only for final intercept and then switching to another target. In an era of supersonic anti-ship missiles that use final-stage maneuvering to confuse defenses, and can be programmed to arrive simultaneously, this approach is not ideal. ========================================

milstar: Raytheon’s X-band, active-array SPY-3 Multi-Function Radar (MFR) =============================================== offers superior medium to high altitude search performance over other radar bands, and its pencil beams give it an excellent ability to focus in on targets. SPY-3 will be the primary DBR radar used for missile engagements, and the only radar equipping the new Zumwalt Class destroyers. That will require additional programming, in order to give the radar volume search capabilities as well. Many anti-ballistic missile radars are X-band, and the SPY-3 could also be adapted for that role with the same kinds of software/hardware investments that some of the fleet’s S-band, passive phased array SPY-1s have received. On surface combatants, the AN/SPY-3 would also replace the X-band AN/SPQ-9 surface detection and tracking radar that is used to guide naval gunfire, and even track the periscopes of surfacing submarines. On carriers, it will take over functions formerly handled by AN/SPN-41 external link and AN/SPN-46 PALS external link air traffic radars, and would work in conjunction with the new GPS-derived Joint Precision Approach Landing System (JPALS) external link.

milstar: Lockheed Martin’s SPY-4 Volume Search Radar (VSR) will be the 2nd radar band on America’s new carriers. It’s an S-band active array antenna, ===================== rather than the SPY-1’s S-band passive phased array. The Navy was originally going to use the L-band/D-band for the DBR’s second radar, but Lockheed Martin had been doing research on an active array S-band Advanced Radar (SBAR) that could potentially replace SPY-1 radars on existing AEGIS ships. A demonstrator began operating in Moorestown, NJ in 2003. That same year, its performance convinced the Navy to switch to S-band, and to make Lockheed Martin the DBR subcontractor for the volume search radar (VSR) antenna. It also convinced Lockheed Martin to continue work on the project as a complete, integrated radar, now known as “S4R”. S-band offers superior performance in high-moisture clutter conditions like rain or fog, =========================================================== and is excellent for scanning and tracking within a very large volume. While Lockheed Martin makes the VSR antenna, the dual-band approach means that Raytheon is responsible for the radars’ common back-end electronics and software.

milstar: The VSR/S4R’s nearest competitor would be Thales’ SMART-L external link, an active array L-band/D-band radar ========================================================================= that equips a number of European air defense ships, and South Korea’s Dokdo Class LHDs. Unlike the DBR, however, the ships carrying SMART-L variants use the conventional approach of completely separate radar systems, integrated by the ship’s combat system. Another American competitor may also be emerging, via the AMDR radar competition for future DDG-51 Flight III Arleigh Burke Class ships – and possibly for fleet refits.

milstar: For the Flight III Burke-class destroyer's SPY-6(V) AMDR will feature 37 RMAs. The new radar will be able to see targets half the size at twice the distance of today’s SPY-1 radar. The AMDR will have four array faces to provide full-time, 360-degree situational awareness. Each 14-by-14-foot face is about the same size as today’s SPY-1D(V) radar. The SPY-6(V) program has met all milestones, ahead of or on schedule, since its inception in January 2014. The radar has amassed a track record of performance, demonstrating its multi-mission capabilities against an array of single and multiple, simultaneous targets throughout the Navy's extensive testing program and against various targets of opportunity. Now in production at Raytheon's advanced Radar Development Facility, AN/SPY-6(V) remains on schedule for delivery to the first DDG 51 Flight III, the future USS Jack H Lucas (DDG 125), in 2019. http://raytheon.mediaroom.com/2018-10-10-Raytheons-SPY-6-radar-tracks-ballistic-missile-through-intercept-and-multiple-simultaneous-targets he AMDR suite is being developed to fulfill Integrated Air and Missile Defense requirements for multiple ship classes. This suite consists of an S-Band radar (AMDR-S), an X-band radar and a Radar Suite Controller.

milstar: he AMDR suite is being developed to fulfill Integrated Air and Missile Defense requirements for multiple ship classes. This suite consists of an S-Band radar (AMDR-S), an X-band radar and a Radar Suite Controller. https://defense-update.com/20150512_amdr_cdr.html Raytheon video

milstar: nce you install the SPY-6 you really need 1400-1500 tons of cooling. When we were starting the early preliminary design, NAVSEA already had an energy saving initiative. It was a plan to take the Navy standard 200 ton plants and equip them with a more fuel efficient compressor, and some other design improvements. All of that’s made by York Navy Systems in Pennsylvania that makes that standard 200 ton plant. NAVSEA works with them, and they are actually in the process now, and there’s a working prototype of the improved 200 ton plant that is putting out over 325 tons of cooling and it is just going through its equipment qualification to make sure the new machine will pass all the Navy standards for shock survivability. We are getting ready to put the initial orders for those to deliver to the Flight III because when you put five of those you get an excess of 1500, and that will give us more than enough cooling to accommodate the new cooling loads. So those have been the key components in changing the ship for the Flight III. http://cimsec.org/cimsec-interviews-capt-mark-vandroff-program-manager-ddg-51/25050

milstar: Because AMDR is such a tremendous increase in capability, how does this affect the DDG 51’s growth margins? That is one of the reasons we looked at things like the extra cooling and the extra power. If you look at where the Flight IIA is, the Flight IIA has about one and a half MW of service life power growth, and about 200 tons of cooling growth. If you added up every load on a Flight IIA today you would get something just over 4 MW of load, and if you put two 3 megawatt generators on the load together to power those four megawatts. You pay an efficiency penalty when you parallel two generators together, so two 3 megawatt generators gives about 5.8 MW of usable power and about 200 KW of the generators fighting themselves at peak. That is about one and a half MW to one and two thirds MW of margin on a IIA today. The Flight III will have a heavier load. A full battle load will be up over 5.5 MW, but we will be well over 7.5 MW when we put two four MW machines online together. We will have another two MW of power. The total cooling reserve will be about 200 refrigeration tons to 300 refrigeration tons. http://cimsec.org/cimsec-interviews-capt-mark-vandroff-program-manager-ddg-51/25050

milstar: The two FREDA Frigates are set to receive a "boosted" variant of Thales' Herakles S-band multifunction radar. Illustration: Thales avy Recognition (NR): How did Thales managed to increase the detection range of the Herakles ? Thales radar expert (TRE): The increased range is obtained by: • The increase in power (adding additional Tx modules in the transmitter bay) • The generation of new impulses • The creation of a new search/watch mode NR: Does this "new" Herakles radar has a new name ? TRE: No NR: Will this "boosted" HERAKLES be a limiting factor relative to the capacity of Aster 30 missiles? In other words, in case of interception, will the FREDA + Herakles + Aster 30 combination have the same capabilities as the Horizon + Smart L+ Aster 30 combination ? TRE: The Horizon frigates are equipped with SMART-L radar and EMPAR. Aster 30 firing tests (with French and foreign navies) showed that Herakles was very effective in its current configurations. NR: Is there an impact on the current dimensions of the Herakles ? TRE: No impact because predispositions were taken in the initial design. NR: Will this radar provide Anti-ballistic Missile (ABM) capabilities to the FREDA vessels ? TRE: The FREDA ships will not have to conduct ABM missions. NR: Is the installation of adjunct systems necessary for the implementation of this radar ? (More power, more computers etc ...) TRE: There is no installation of additional systems but an evolution of the Herakles system: • Additional Tx modules are added for the "boosted" version of Herakles, requiring adjustment of the setting of the Tx modules cooling system. • Changes in certain subsets of the radar was necessary to generate new impulses and the new "Long Range" search/watch mode (signal generation, treatment, ...) NR: Will there be a test phase at the shore integration facility (in St. Mandrier) ? TRE: This is not planned for FREDA. NR: Finally can you confirm the range increase of 50 Km for the "boosted" Herakles (from 250 km to 300 km) ? TRE: We can not mention any numbers, we can just mention a significant increase in range. View from an Aquitaine class FREMM Frigate. The VLS at the foreground are SYLVER A70 for MBDA's Naval Cruise Missile while the VLS row in the background are SYLVER A50 to deploy the Aster family of surface to air missiles. The FREDA are set to receive 32x A50 cells for Aster 15 and Aster 30 SAM. The SYLVER family of VLS is designed and made by DCNS.

milstar: L band ochen xoroschij dlja rasprostranenija w morskix uslowijax (nizkoletjaschie raketi ) cena nize chem S ,no gabariti antenni bolsche https://www.forecastinternational.com/archive/disp_pdf.cfm?DACH_RECNO=172 Antenna array 7.3 x 7.3 m The planar array produces a series of pencil beams phase-positioned to scan up to 20º in elevation while the complete antenna rotates. The elevation scan consists of 5- to 100-nautical-mile short-range beams, and 100- to 250-nautical-mile long-rang e beams. Through use of pencil beams, the radar provides elevation coverage while eliminating some of the clutter problems typically associated with CSC2 beams The planar antenna is made up of 44-row transceivers, 44-row feed assemblies, four-column feed assemblies, and 12-row power supplies. The radars use a variety of interference rejection techniques. These include gr eater than 10 percent agile bandwidth, pulse-to-pulse frequency agility, low side- lobes, sidelobe blanking, MTI and constant false alarm rate processing, pseudo-ra ndom pulse repetition fre- quency, pseudo-random beam positioning, and a linear frequency-modulated waveform. The system automatically ad apts to changing ground and sea clutter environments , maintaining accuracy and target resolution capabilities under a variety of sur- veillance conditions. The data processor controls radar performance and monitors system status. Sweep-to- sweep and scan-to-scan correlation reduces false alarms and multiple reports. The TPS-77(V) was tailored to be adaptable to a variety of siting situations. It can “look down” into valleys to detect low-flying aircraft in spite of severe clutter. Performance in rain and mountainous/forested location is good. FPS-117(V) Tactical Ballistic Missile Defense Upgrade. This upgrade improved detection and missile cueing capabilities to provide for long-range detection of ballistic missiles, launch and impact point prediction, and better air surveillance capability. The radar can be tailored to meet specific theater ballistic missile (TBM) requirements as needed. L-88. This is the aerostat version of the FPS-117(V). The L-88 system is tethered up to a height of 15,000 feet. From this altitude, the radar is capable of spotting small aircraft as far as 200 nautical miles away. The U.S. Customs Service ordered four of these radar-equipped aerostats in 1988 for deployment to the Caribbean and along the southwest border of the U.S. for drug traffic interdiction. Range 9.25 to 462.5 km ± 46m 5 to 250 nm ± 0.25 nm Azimuth 360° ± 0.18° Elevation angle -6° to 20º RF (transmitter) characteristics Frequency 1,215 to 1,400 MHz Bandwidth 185 MHz Agility 20 frequencies (quasi-random selection, beam-to-beam) Type waveform Pulse width 51.2 μsec (short range) 409.6 μsec (long range) Power Total system 70 kW maximum Transmit power Peak 24.75 kW Effective radiated 125 MW Duty factor 16 percent maximum Power supply 28 volts FPS-117(V) MTBF 1,076 hr (required) MTTR 30 min Availability 99.6%

milstar: The AN/SPS-49(V) radar is a narrow beam, very long range, 2D air search radar that primarily supports the AAW mission in surface ships. The radar is used to provide long range air surveillance regardless of severe clutter and jamming environments. Collateral functions include air traffic control, air intercept control, and antisubmarine aircraft control. It also provides a reliable backup to the three-dimensional (3D) weapon system designation radar. Band L Frequency Band: 850 to 942 MHz three selectable 30MHz bands 48 discrete frequencies Transmitting Power: 360 kW peak 280 kW specified peak power 12-13 kW average power Antenna Parameters: Parabolic Reflector stabilized for roll and pitch 7.3m/24 ft wide, 4.3m/14.2 ft high Rotating Clearance 8.7m/28.4 ft diameter Beamwidths: 3.3�-3.3� azimuth 11� elevation Cosec2 to 30�, csc2 to 20� elev Gain 28.5 dB Scan rate 6 or 12 rpm Line-of-sight mechanical stabilization to � 25 deg roll IFF antenna (AS-2188) mounted on boom Range 250 nm Minimum Range : 0.5 nmi Frequency Selection: Fixed or frequency agile Range Accuracy: 0.03 nmi Azimuth Accuracy: 0.5 deg PRF 280, 800, 1000 pps Pulse width 125 microsecond The AN/SPS-49(V) radar operates in the frequency range of 850 - 942 MHZ. In the long range mode, the AN/SPS-49 can detect small fighter aircraft at ranges in excess of 225 nautical miles. Its narrow beamwidth substantially improves resistance to jamming. The addition of coherent side lobe canceller (CSLC) capability in some AN/SPS-49(V) radars also provides additional resistance to jamming/interference by cancelling the jamming/interference signals. The moving target indicator (MTI) capability incorporated in the AN/SPS-49(V) radar enhances target detection of low-flying high speed targets through the cancellation of ground/sea return (clutter), weather and similar stationary targets. In 12 RPM mode operation, this radar is effective for the detection of hostile low flying and "pop-up" targets. Features of this set include: Solid state technology with modular construction used throughout the radar, with the exception of the klystron power amplifier and high power modulator tubes Digital processing techniques used extensively in the automatic target detection modification Performance monitors, automatic fault detectors, and built-in-test equipment, and automatic on line self test features The Radar Set AN/SPS-49 is an L-band, long-range, two-dimensional, air-search radar system that provides automatic detection and reporting of targets within its surveillance volume. The AN/SPS-49 performs accurate centroiding of target range, azimuth, amplitude, ECM level background, and radial velocity with an associated confidence factor to produce contact data for command and control systems. In addition, contact range and bearing information is provided for display on standard plan position indicator consoles. The AN/SPS-49 uses a line-of-sight, horizon-stabilized antenna to provide acquisition of low-altitude targets in all sea states, and also utilizes an upspot feature to provide coverage for high diving threats in the high diver mode. External control of AN/SPS-49 modes and operation by the command and control system, and processing to identify and flag contacts as special alerts are provided for self-defense support. The AN/SPS-49 has several operational features to allow optimum radar performance: an automatic target detection capability with pulse doppler processing and clutter maps, ensuring reliable detection in normal and severe types of clutter; an electronic counter-countermeasures capability for jamming environments; a moving target indicator capability to distinguish moving targets from stationary targets and to improve target detection during the presence of clutter and chaff; the Medium PRF Upgrade (MPU) to increase detection capabilities and reduce false contacts; and a Coherent Sidelobe Cancellation (CSLC) feature. The AN/SPS-49 long range 2-dimensional air surveillance radar used for early target detection. The long-range AN/SPS-49 radar operates in the presence of clutter, chaff, and electronic counter-measures to detect, identify, and control low-radar-cross-section threats traveling at supersonic speeds. AN/SPS-49 provides the front-end element for successful target identification, designation, and engagement with either long range (SM-1 or SM-2) missiles and/or short range local defense missiles. A key feature of the most recent version of the radar, the SPS-49A(V)1 is single-scan radial velocity estimation of all targets allowing faster promotion to firm track and improved maneuver detection. This is done using unique signal processing techniques originated and tested by the Radar Division of NRL using 6.1 and 6.2 Office of Naval Research (ONR) funds. The AN/SPS-49(V) radar is a narrow beam, very long range, 2D air search radar that primarily supports the AAW mission in surface ships. The radar is used to provide long range air surveillance regardless of severe clutter and jamming environments. Collateral functions include air traffic control, air intercept control, and antisubmarine aircraft control. It also provides a reliable backup to the three-dimensional (3D) weapon system designation radar. https://fas.org/man/dod-101/sys/ship/weaps/an-sps-49.htm

milstar: example 1 GHz l-band and 3 GHz s-band rf sources then atmospheric attenuation due to oxygen and water vapor in the atmosphere are on the order of (all data taken from "Radio Wave Propagation", Nat'l Defense Research Committee, Stephen Attwood): ~0.005 dB/km for l-band and ~0.0065 dB/km for s-band, this would mean that over a 400 km distance the l-band set would experience a one-way attenuation of ~2 dB while s-band set would experience a loss of ~2.6 dB... ####################### this attenuation corresponds to a radiated rf energy drop of around 37% for l-band and 45% for s-band over the 400 km distance... not a tremendously huge difference but it still shows that l-band would experience less of a loss due to atmospheric attenuation as compared to s-band... in inclement weather (ie. rain) two effects have to be considered, attenuation (similar to that due to atmospheric effects), and backscatter (ie. clutter) due to raindrops scattering the rf energy... for attenuation due to rainfall, the actual losses also depend on the rainfall rate (with it's attendant effect on raindrop size distribution), hence taking for example 4 mm/hr rainfall a 1 GHz l-band set would experience 1.08 x 10^-4 dB/km attenuation (yes that is 10 to the minus 4 power, it's that small), while a 3 GHz s-band set would experience 1.19 x 10^-3 dB/km attenuation (note that the total attenuation due to rainfall would be only over the distance the rf energy radiated into in which the rainfall is present)... here the diff is a factor of around 11 times greater attenuation per km for s-band than for l-band... ##################################################################### the second effect, that of rainfall backscatter is even more pronounced as rain clutter rf return is inversely proportional to the fourth power of the wavelength (ref: "Antennas and Radiowave Propagation", Robert Collin) hence the 3 GHz s-band set would experience approx 81 times greater clutter return strength due to rain than the 1 GHz l-band set... ################################################################ the greater clutter return would mean it would have to expend more processing to try and extract valid target return signals from the background clutter (ie. decorrelate the clutter, etc)... note we are not including use of polarization here to mitigate rain backscatter effects (specifically circular polarization)...



полная версия страницы