Форум » Дискуссии » военные лазеры » Ответить

военные лазеры

milstar: В 2012 году компания Lockheed Martin представила широкой общественности довольно компактный комплекс ПВО ADAM, который производит уничтожение целей с помощью луча лазера. Он способен уничтожать цели (снаряды, ракеты, мины, БПЛА) на дистанциях до 5 км. В 2015 году руководство этой компании заявило о создании нового поколения тактических лазеров мощностью от 60 кВт. --------------- В 2015 году компания Lockheed Martin представила мобильный боевой лазер мощностью 30 кВт на базе грузовика. Спустя два года, в результате проведенных тестов данный показатель превысили почти вдвое, достигнув 58 кВт. Теперь новая лазерная установка готовится к поставке в одну из военных частей в Алабаме. В основу работы боевого лазера положен принцип спектрального объединения волоконных лазеров, когда лучи от нескольких излучателей по оптическому волокну (поверхность его легирована редкоземельными металлами эрбием, иттербием, неодимом и др.) передаются в объединяющий блок, где они «сливаются» в один мощный луч. Гибкость оптоволоконных кабелей позволяет генерировать лазерные лучи длиной в тысячи метров, при этом в свернутом виде волокно занимает мало места. К тому же оптоволокно прекрасно охлаждается естественным образом от окружающего воздуха. По сравнению с твердотельными лазерами оптоволоконные расходуют энергии на 55 % меньше. По мнению специалистов, новый лазер сможет эффективно уничтожать БПЛА, снаряды, легкие самолеты, вертолеты, а также взрывать мины и самодельные взрывные устройства https://defence.ru/article/v-ssha-ispitali-60-kilovattnii-boevoi-lazer/ http://www.defencetalk.com/lockheed-to-deliver-world-record-setting-60kw-laser-to-u-s-army-69517/ https://phys.org/news/2017-03-lockheed-martin-world-record-setting-60kw.html video https://www.youtube.com/watch?v=L9AC1njoP5o http://www.tactical-life.com/news/lockheed-60kw-laser/ https://www.youtube.com/watch?v=3cQ6iTUsT2Y

Ответов - 125, стр: 1 2 3 4 5 6 7 All

milstar: http://opticjourn.ifmo.ru/file/article/7867.pdf

milstar: рад является разреши- мой технической задачей. Поэтому, как видно из рис. 5, при использовании для передачи и приема сигналов телескопа с диаметром глав- ного зеркала около 1 м можно осуществлять ла- зерную локацию диффузно отражающих объек тов площадью порядка 1 м 2 при расстоянии до объекта примерно 1000 км. http://opticjourn.ifmo.ru/file/article/7867.pdf

milstar: corresponding to an optical-optical conversion efficiency of 12%. In order to avoid damage to the optics, the pump power was controlled to be lower than 15.0 W High power Nd:YAG ceramic lasers: Passive Q-switching and frequency doubling (PDF Download Available). Available from: https://www.researchgate.net/publication/241282300_High_power_NdYAG_ceramic_lasers_Passive_Q-switching_and_frequency_doubling [accessed Aug 24, 2017]. https://www.researchgate.net/publication/241282300_High_power_NdYAG_ceramic_lasers_Passive_Q-switching_and_frequency_doubling


milstar: http://techlibrary.ru/b/2j1f1k1l1p_2j.2x.,_3g1a1w1o1p_2m.2h._2z1b1p1r1o1j1l_1i1a1e1a1y_1q1p_1m1a1i1f1r1o2c1n_1t1f1w1o1p1m1p1d1j2g1n._2007.pdf

milstar: Work is underway to establish the first interplanetary laser communication link. The $300 million NASA experiment, if successful, will connect robotic spacecraft at Mars with scientists back on Earth via a beam of light traveling some 300 million kilometers. ---------------------------- The 5-watt laser NASA plans to test at Mars by the end of the decade is expected to transmit data at rates nearly 10 times faster than any existing interplanetary radio communications link. The difference, NASA officials said, will be comparable to moving from a dial-up modem to a broadband Internet connection. ------------------------------------------------------------------------------- The U.S. military has plans to field a constellation of optical communications relay satellites in Earth orbit starting around 2012. Those satellites are intended to help the Pentagon deal with a bandwidth crunch that has been heightened in part by a growing fleet of unmanned aerial vehicles that are transmitting data-rich imagery. NASA faces a bandwidth crunch of its own in deep space as more powerful spacecraft and instruments become reality. Highly reliable data links with fast transmission rates also are deemed critical to the human planetary expeditions NASA hopes to undertake. ------------

milstar: To achieve this extreme precision during Thursday's demonstration, OPALS locked onto a laser beacon emitted by the Optical Communications Telescope Laboratory ground station at the Table Mountain Observatory in Wrightwood, California, and began to modulate the beam from its 2.5-watt, 1,550-nanometer laser ################################## to transmit the video. The entire transmission lasted 148 seconds and reached a maximum data transmission rate of 50 megabits per second. It took OPALS 3.5 seconds to transmit each copy of the "Hello World!" video message, which would have taken more than 10 minutes using traditional downlink methods. https://www.jpl.nasa.gov/news/news.php?release=2014-177

milstar: RELEASE 13-309 NASA Laser Communication System Sets Record with Data Transmissions to and from Moon NASA's Lunar Laser Communication Demonstration (LLCD) has made history using a pulsed laser beam to transmit data over the 239,000 miles between the moon and Earth at a record-breaking download rate of 622 megabits per second (Mbps). https://www.nasa.gov/press/2013/october/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from/ LLCD is NASA's first system for two-way communication using a laser instead of radio waves. It also has demonstrated an error-free data upload rate of 20 Mbps ################################################## transmitted from the primary ground station in New Mexico to the spacecraft currently orbiting the moon.

milstar: https://www.space.com/22680-nasa-lunar-laser-communications-experiment-infographic.html 400 mm apperture ground 100 mm apperture 0.5 wt laser on satellite https://www.space.com/22680-nasa-lunar-laser-communications-experiment-infographic.html

milstar: The Optical Communications Telescope Laboratory (OCTL) located on Table Mountain near Wrightwood, CA served as an alternate ground terminal to the Lunar Laser Communications Demonstration (LLCD), the first free-space laser communication demonstration from lunar distances. The Lunar Lasercom OCTL Terminal (LLOT) Project utilized the existing 1m diameter OCTL telescope by retrofitting: ########################################### (i) a multi-beam 1568 nm laser beacon transmitter; (ii) ############################################## a tungsten silicide (WSi) superconducting nanowire single photon detector (SNSPD) receiver for 1550 nm downlink; ##################################################################################### (iii) a telescope control system with the functionality required for laser communication operations; and (iv) a secure network connection to the Lunar Lasercom Operations Center (LLOC) located at the Lincoln Laboratory, Massachusetts Institute of Technology (LL-MIT). The laser beacon transmitted from Table Mountain was acquired by the Lunar Lasercom Space Terminal (LLST) on-board the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and a 1550 nm downlink at 39 and 78 Mb/s was returned to LLOT. Link operations were coordinated by LLOC. During October and November of 2013, t wenty successful links were accomplished under diverse conditions. In this paper, a brief system level description of LLOT along with the concept of operations and selected results are presented. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8971/89710X/LLCD-operations-using-the-Optical-Communications-Telescope-Laboratory-OCTL/10.1117/12.2044087.short

milstar: https://www.youtube.com/watch?v=ptfLfrWI648

milstar: The Lunar Laser OCTL Terminal is an auxiliary ground station terminal for the Lunar Laser Communication Demonstration (LLCD). The LLOT optical systems exercise modulation and beam divergence control over six 10-W fiber-based laser transmitters at 1568 nm, which act as beacons for pointing of the space-based terminal. The LLOT design transmits these beams from distinct sub-apertures of the F/76 OCTL telescope at divergences ranging from 110 μrad to 40 μrad. LLOT also uses the same telescope aperture to receive the downlink signal at 1550 nm from the spacecraft terminal. Characteristics and control of the beacon lasers, methods of establishing and maintaining beam alignment, beam zoom system design, co-registration of the transmitted beams and the receive field of view, transmit/receive isolation, and downlink signal manipulation and control are discussed. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8610/86100P/The-Lunar-Laser-OCTL-Terminal-LLOT-optical-systems/10.1117/12.2004415.short?fileName=86100P

milstar: https://link.springer.com/article/10.1007/s11214-014-0122-y described in detail in Robinson et al. (2011), Elgin et al. (2011), Boroson (2012), and Boroson et al. (2014). It consisted of an optical module mounted on an external panel of LADEE (See Figs. 1 and 2) and two electronics modules, the modem and the Controller Electronics (CE). The optical module was based on a duplex 10 centimeter reflective telescope that produced a ∼15 μrad beam. Optical fibers coupled the optical module to the modem where nominally 0.5 W downlink transmitted optical waveforms were generated and uplink received optical waveforms were processed (Robinson et al. 2011). Control for the optical module and modem as well as command and telemetry interfaces to the spacecraft were provided by the CE. There was also a 40 Mbps interface between the LADEE data buffer and the downlink side of the modem, as well as data connections from the modem to the CE.

milstar: Table 1 https://link.springer.com/article/10.1007/s11214-014-0122-y LLCD system block diagram System Uplink data rate 10 or 20 Mbps Uplink format 4-ary PPM Downlink data rate 622, 311, 155, 78, 39 Mbps Downlink format 16-ary PPM Space terminal Total mass ∼30 kg Total power ∼90 W Telescope 10 cm, duplex Uplink receiver Pre-amplified direct detection Downlink transmitter 0.5 W EDFA amplifier Gimbal 2-axis Tracking sensors Inertial sensors plus nutating fiber comm receiver Ground terminal Uplink 4 @ 15 cm Downlink 4 @ 40 cm Uplink transmitter 4 @ 10 W Downlink receiver Superconducting nanowire single photon detecting arrays

milstar: 3.3 Ground Terminals The primary ground terminal, the LLGT, has been described in detail in Fitzgerald (2011) and Boroson (2012). I ts main features were its array of four 15 cm UPLINK telescopes, each transmitting a 10 W replica of the uplink which was delivered via single-mode fiber (Caplan ) #################################################################################################################### and tracking the downlink; its array of four 40 cm DOWNLINK telescope (Boroson et al. 2004), each coupled via multi-mode, polarization-maintaining fiber (Grein 2011) ###################################################################################### to an array of superconducting nanowire single photon detectors (Dauler et al. 2007; Willis et al. 2012); a single gimbal carrying all 8 telescopes in an environmentally-controlled enclosure; and a nearby control room containing the cryogenic nanowire systems, the rest of the modem electronics and opto-electronics, the various control computers, and the local operations center. The LLGT was capable of performing all the uplink, downlink, and TOF functions in the LLCD system in real time. Its design and performance were described in more detail in Murphy et al. (2014). Its form factor allowed it to be transportable, and it was ultimately brought to White Sands. (See Fig. 3.)

milstar: 8 Demonstrations and Performance Of course, a major goal of LLCD was “just” to demonstrate that lasercom could be done from a lunar spacecraft to the ground. This was accomplished the first time it was attempted and on nearly all the passes through the month. However, the real goal of LLCD was to show that lasercom had the following useful properties: 1. An optical space terminal can be integrated on and then flown on an operational spacecraft, and then provide useful services. 2. Lasercom can deliver high data rates from the Moon and beyond. 3. Optical beams can be acquired and tracked regularly, quickly and in many orbital and atmospheric conditions. 4. Optical links can be run error-free, on both the uplinks and downlinks through the turbulent atmosphere. 5. Optical links can be run error-free, on both the uplinks and downlinks, in daytime and nighttime, near the sun, as well as high and low in the sky. 6. Optical link operations can be run with a very small team. 7. Clouds can be dealt with operationally by preparing and coordinating a ground terminal network. 8. Intermittent clouds can be defeated by using a fast-re-acquiring system that uses a repeat-request protocol such as Disruption Tolerant Networking. 9. A capable optical ground terminal can be built from an array of small telescopes that can be transportable. 10. Highly-efficient high data rate optical reception can be achieved, even through turbulence, using high-speed photon-counters with error-correction codes and channel data interleavers. 11. Multiple error-free HD video streams can be carried over such links, in addition to data files. 12. Optical links can be used to carry command, control, and telemetry signals for the lasercom system itself. 13. Optical links can be brought up, operated, and reconfigured without the need for radio connectivity. 14. High-speed lasercom signals can be used to make continuous, real-time ranging estimates with centimeter-class accuracy. All of these goals were achieved with LLCD. 1—Although LADEE was a completely new, very small satellite with only moderate capabilities for power and thermal control, the LLCD Space Terminal was successfully designed to fly on it. Its modularity allowed it to be placed throughout LADEE, aiding in balancing. It survived the launch and multiple rocket firings on the way to lunar orbit. It was successfully operated in the tough thermal environment of low lunar orbit, and was able to sustain links for 20–30 minutes per orbit on battery power. 2—The LLCD system regularly achieved error-free uplinks at either 20 Mbps or 10 Mbps, and also regularly was able to achieve downlinks at 622 Mbps, although many “passes” were operated at 311 Mbps so as to preserve energy by running the laser transmitter at half power. Lower data rates were sometimes used in particularly turbulent conditions. Such performance had been predicted in pre-launch modeling. The alternate terminals were successful in demonstrating their lower data rates. 3—After the first very few passes where pointing biases were learned and where a few space-ground (LLGT) configuration details were refined, then after acquisition, the system locked up every time with error-free performance both up and down. In most cases, with the uplink already illuminating the spacecraft, the Space Terminal was powered up and then slewed to its calculated position. Immediately upon reaching that position, the uplink was detected and locked up, and the duplex link was operational within seconds after that. (The one-way time of flight of the beam was about 1.3 seconds.) 4—With the primary ground terminal, uplinks and downlinks ran error free in nearly all atmospheric conditions. That is, the links were established and, 20 minutes later or so, when the links were powered down, the error totals on both the uplink and downlink showed zero counts. These counts were available because the decoders knew whether they had succeeded or not with extremely high probability. 5—With the primary ground terminal, links were error free at all times of the day and night. In fact, during the one pass with the sun near the Moon in the sky, links were preserved with Sun-Earth-Probe angles as low as 3 degrees. (There was essentially only one chance during the month when geometries were such that such a test could be run.) Also, the link continued to work as the Moon got lower and lower in the sky, with one pass down to 3.8 degrees elevation. 6—During the first several passes, many people from the Ground and Space Terminal teams—mechanical and thermal engineering, electrical engineering, and communications—stayed in the Operations Center to assist with any necessary initial debugging efforts. However, after only a few days, the operations had become so routine that only two operators at the LLGT and three operators (Director plus liaisons with the spacecraft team and the LLGT) in the LLOC were required. There is no doubt that operations could have been done with even fewer. 7—With the potential for cloud cover during the short one-month mission, the LLCD program added two alternate ground terminals, as described above. The times when both the LLGT and the LLOGS could see LADEE were limited, but of those, the availability of two terminals definitely increased the number of possible passes. The LLGT and LLOT had near complete time overlap, and so several times every day, there was the opportunity to choose, at the last minute, the terminal with better cloud conditions. On several occasions during the month, it was found that cloud conditions changed during the pass. Thus, with only a modicum of warning to the terminal on standby, the Space Terminal was commanded to drop the link being clouded out, slew to the new terminal, and successfully lock up and operate, all in seconds. This demonstrated break-before-make handover will be important in future space-to-ground systems with capable ground networks. 8—Near the end of the month, a team from Goddard SFC plus the MIT Lincoln Laboratory programmers created the capability to send files from Goddard to the LLOC to the LLGT, up over the Moon, and back to Goddard, using end-to-end Delay/Disruption Tolerant Networking. The details of this demo were given in Israel and Cornwell (2014), but we can say here that the demonstration was quite successful in pushing files over the link. In fact, one of the passes selected for this demo experienced scattered clouds over White Sands. Although the link came and went, the DTN protocol successfully pushed the data through whenever the links were up. There is no doubt that such a capability will make some kinds of future laser communication functions be successful even in the face of partial clouds. 9—The LLGT was designed with an array of transmit telescopes and an array of receive telescopes, all configured on a single gimbal. The non-coherent uplink transmissions and multi-mode fiber-coupled photon-counted downlinks worked very well (and as predicted by theory and modeling) in achieving these high data rates, especially with the very small space transmitter. This was all designed so that it could be taken apart and reassembled quickly, making it fully transportable. Future ground infrastructures will likely be a combination of fixed-location terminals and transportable ones. 10—LLCD demonstrated what had been known through theory and simulation—that a powerful, medium-rate code paired with a long channel-data interleaver would allow error-free performance even through appreciable fading due to turbulence. In addition, the ground terminals used photon-counting detectors behind multi-spatial-mode collectors, allowing operation through turbulence without adaptive optics. Error-free performance was demonstrated in nearly all conditions. 11—Using the error-free, high-rate up and downlinks, LLCD was able to transmit arbitrary signals (via an Ethernet port) up to the Space Terminal, and then to loop the demodulated bits back to the ground. The 20 Mbps uplink was thus able to carry up to four HD video signals and loop them back. Although future systems will likely not use the loop-back configuration of this demonstration, the achievement showed the ability to send error-free HD videos either up or down. Both pre-recorded and live videos were sent in this fashion, to the great amusement of visitors to the LLOC. The fast links were also used to demonstrate error-free transmission of large data files both on the uplink (to the Controller) and on the downlink. In fact, the downlink was used to transmit the entire 1 GB LADEE buffer on a number of occasions during the month, taking only minutes instead of the 2–3 days it would have taken had LADEE tried to accomplish this using its radio link. This data was found to be very useful, especially after anomalies occured. 12—Operating the Space Terminal was possible by sending it commands and by monitoring its telemetry. The system was able, of course, to do both of these using the radio links (through the LADEE systems). However, the Space Terminal was configured to send downlink telemetry (a much more complete set) at a rate about 50 times that of the radio link, as well as accept optical uplink commands sent in real time directly from the LLOC to the LLGT. After the first several sessions where all configurations were performed using the radio links, the LLCD team used instead the optical links to do all terminal commanding and configurations throughout the month of passes. That included being able to change the rate and format details of the uplink, with much care, during the sessions. It also made feasible (and demonstrated) the uploading of files including patches to the on-board software. 13—Usually, LLCD requested LADEE to send the power-up commands to the Space Terminal in real time when the ground terminal and planning were announced to be ready. However, on several passes, previously-configured command scripts had been uploaded to LADEE. Then, at a pre-defined time, LADEE autonomously powered up the Space Terminal which then acquired and locked up with the Ground Terminal. This allowed the entire session to be started, run, reconfigured, and shut down with no radio links required. Only pre-loaded “Absolute Time Sequences” and optical links were used. Such capability will greatly simplify future mission operations. 14—As described above, the primary terminal was able to make continuous two-way Time of Flight measurements with high accuracy whenever both the up and down lasercom links were running. This data was processed off-line for LLCD and LADEE and shows the predicted performance—at least as good as the sporadic ranging done by the radio system. It is very likely that future real-time details will be able to be tweaked to give even an order of magnitude (if not more) better than radio performance in future systems. 9 The Meaning of LLCD for Future Science and Exploration Mission LADEE was a relatively short mission, and had an even shorter period allocated for LLCD operations. However, the approximately 100 total passes, spread out over a wide variety of day/night, orbital, and atmospheric conditions, plus three different ground terminals, were more than adequate to demonstrate the capability, robustness and reliability of the high-rate LLCD lasercom system. In the past, science or exploration mission managers have been wary about employing this new technology for a number of reasons. It is hoped that the specific achievements listed in the last section will go a long way to giving confidence to future system designers for including lasercom in order to increase their data return, as well as meet new uplink needs. Certainly, this exact system could be useful for lunar trunk lines, carrying large amounts of science or mission ops data in both directions. We should point out that the exact same space terminal hardware, if it were to be reprogrammed, could quadruple the downlink capability (if paired with a larger ground telescope). Similarly, the uplink could quadruple its capability with more on-board decoders. (It used a ¼ duty cycle uplink that could be filled in the future, and was already designed with plenty of signal margin.) A manned exploration mission might not need all this demonstrated data rate capability, and so it is easily envisioned to create an even smaller space terminal that could still greatly outperform a radio system of the same SWaP. Either of these systems would require the development of a set of ground terminals around the world, for increased availability due to both the rotation of the Earth and clouds. The same space design, with an enhanced space transmitter amplifier and larger ground telescopes (2–3 meters, say), is predicted to be able to even deliver high capability on missions out to the Lagrangian points or possibly even some asteroids. ################### Of course, lasercom is highly relevant to planetary missions as well. Their huge distances, though, (hundreds to tens of thousands of times farther than the lunar link) would require a somewhat larger space telescope, an ################################################################################################################################################################ appreciably (though available) higher power space transmitter, and a very much larger ground collector (Boroson et al. 2004; Hemmati et al. 2012). 10 Summary The LLCD mission was a great success. All the functions operated as predicted or better. PAT was robust and nearly instantaneous. Useful data services were demonstrated and found to be dependable. A rudimentary multi-site ground terminal network was developed and demonstrated. Operations with the NASA spacecraft were made routine. It was demonstrated that optical links could be set up without special hands-on interactions, and ground station handovers were demonstrated. Many lasercom system design approaches were validated, including specifying and validating the spacecraft-terminal interface, building the lasercom links to work through turbulence, operating lasercom as part of an ongoing science mission, employing multi-mode photon-counting receivers, using ground telescope arrays on both the uplink and downlink, employing an inertially-stabilized space telescope, including high-accuracy ranging as a by-product of the lasercom links, and so on. LLCD has been the world’s first successful two-way lasercom link from lunar orbit to the ground, has set the record for highest data rates ever accomplished to or from the Moon using any means, and has been NASA’s first lasercom system. It is expected that next-generation science and exploration missions will begin to tap the great potential of optical communications. Notes https://link.springer.com/article/10.1007/s11214-014-0122-y

milstar: Экспериментальный лазерный канал системы управления ракеты комплекс П-1000 "Вулкан" foto http://oruzhie.info/raketi/655-p-1000-vulkan Постановлением СМ СССР в октябре 1987 г. предписывалось провести работы по повышению точности ракет комплекса "Вулкан" с отработкой высокоточного лазерного канала наведения и создания ракеты "Вулкан ЛК". Работа над импульсным лазерным каналом наведения велась ЦНИИ "Гранит" под руководством С.А.Шарова. Система распознавала геометрические параметры корабля-цели и выдавала команды на коррекцию траектории полета ракеты для поражения наиболее уязвимых участков корабля-цели. Испытания системы велись в Севастополе по проходящим кораблям и с самолета-летающий лаборатории Ил-18. Разработка лазерного канала наведения как системы наведения ракет начата до 1987 г. Главный конструктор бортовой аппаратуры ракеты - В.Г.Сеньков, главный конструктор лазерного канала - С.Н.Шаров. Пуски серийный ракет оснащенных ГСН лазерного канала планировалось провести в 1987-1989 г.г. Аппаратура лазерного канала была размещена в диффузоре воздухозаборника. Технологическая ракета для наземной отработки системы прошла стендовые испытания. На Северном полигоне в Неноксе планировалось совершить 5 пусков ракет с наземного стенда (по др.данным для испытаний выделено 9 ракет). Но вероятно в 1988-1989 г.г. разработка темы "Вулкан ЛК" была прекращена. Диаметр луча - ок.10 м Дальность распознавания - 12-15 км

milstar: Yahont,Oniks Cirkon in TPS 3900 kg ,without 3000 kg TPS -8900*720 mm

milstar: Боевые лазеры “Пересвет” заступили на опытно-боевое дежурство Лазерные комплексы “Пересвет” первого декабря заступили на опытно-боевое дежурство, сообщает газета Вооруженных Сил России “Красная звезда”. Оснащать российские войска оружием на новых физических принципах начали с 2017 года в рамках госпрограммы вооружений. С поступлением в вооруженные силы лазерных комплексов организовано их освоение личным составом и слаживание боевых расчетов. Личный состав подразделений, где стоит на вооружении это оружие, прошел переподготовку на базе Военно-космической академии имени Можайского, а также на предприятиях промышленности. Военные там получили необходимые теоретические знания и практические навыки. Владимир Путин представил лазерный комплекс первого марта 2018 года, выступая с посланием Федеральному собранию. Название комплексу выбиралось в ходе всероссийского голосования. Минобороны впоследствии сообщало, что лазерные комплексы “Пересвет” уже поступили в войска и развернуты в местах дислокации. Возможное применение Директор Центра анализа мировой торговли оружием (ЦАМТО) Игорь Коротченко считает, что лазерное оружие, такое как комплекс “Пересвет”, может бороться с беспилотниками промышленного и кустарного производства. По его словам, при благоприятных условиях среды, в идеальных условиях, когда нет ни тумана, ни песчаной бури, ни осадков, лазерные комплексы достаточно эффективны для этой цели. “Это одно из направлений реагирования. То есть, любая база, любой объект, который должен защищаться, он должен потенциально будет в перспективе иметь лазерные средства поражения”, — сказал эксперт. При этом Коротченко отметил, что помимо ограничений по погоде, лазерные комплексы требовательны к энергоустановкам — необходимую мощность может быть затруднительно развернуть в полевых условиях. http://ros-oborona.ru/boevye-lazery-peresvet-zastupili-na-opytno-boevoe-dezhurstvo.html

milstar: Последние несколько лет КНР весьма активно занимается разработками боевого лазерного оружия. На выставке «Airshow China 2018» в Чжухае Китайская аэрокосмическая научно-техническая корпорация (CASIC) продемонстрировала самоходную лазерную боевую установку LW-30, предназначенной для защиты объектов от беспилотных летательных аппаратов, легких самолетов и вертолетов. Установленный на LW-30 лазер мощностью 30 киловатт способен поражать цели на дальности до 25 километров. Установка уже принята на вооружение НОАК. В прошлом году Центральное телевидение Китая показало новую разработку китайских инженеров - мобильную лазерную установку. Подробности о предназначении и мощности новой разработки не разглашаются, хотя Defence Blog, со ссылкой на местный источник сообщает, что система предназначена для мгновенного уничтожения целей вблизи береговой линии, а основными ее целями станут небольшие лодки и беспилотные летательные аппараты. http://nvo.ng.ru/nvoevents/2020-01-14/100_200114news2.html

milstar: В РОССИИ ПРЕДЛАГАЮТ СОЗДАТЬ СИСТЕМУ НАВИГАЦИИ НА ЛУНЕ 21 января 2020 г., AEX.RU - Специалисты НПО им. Лавочкина разработали систему навигации на Луне, которая будет состоять из оптико-электронных систем наблюдения и световых лазерных маяков. Об этом сообщает ТАСС со ссылкой на тезисы доклада, подготовленного в рамках XLIV Королёвских чтений. "Мы предлагаем размещение на поверхности Луны искусственных источников света - лазерных маяков, которые будут реперами (знаками, которые находятся в определенной точке поверхности с известной абсолютной высотой - прим. ТАСС) будущей системы. Это позволит построить оптическую навигационную систему максимум из трех спутников и сети лазерных маяков на Луне", - говорится в материалах. Как уточняют специалисты, для создания навигационной системы потребуется полярный спутник с телевизионным комплексом. "В качестве полярного аппарата идеальным решением будет использовать аппарат аналогичный "Луна-26", усовершенствованный системой сброса пенетраторов (датчик, внедряющийся в грунт - прим. ТАСС)", - отмечается в тезисах. Далее для создания объемной топографической карты Луны эта координатная сеть будет соединена со снимками миссии LRO. Для следующего этапа может быть использован аппарат с мощным телескопом на базе обсерватории "Спектр-УФ", чтобы "видеть весь диск Луны" для определения координат налунного объекта относительно реперов. При необходимости может быть запущен еще один такой аппарат в точку Лагранжа L2 для наблюдения за обратной стороной естественного спутника Земли. "Для построения опорной сети селенодезической системы координат необходимо доставить на поверхность Луны первые реперные маяки (минимум 3)", - говорится в материалах. Для этих целей специалисты планируют создать многофункциональный аппарат, который осуществит сброс маяков. "Исходя из результатов проектного анализа, оптимальный способ доставки маяков - малые пенетраторы, которые будут сброшены с орбитального лунного КА (космического аппарата - прим. ТАСС)", - считают специалист



полная версия страницы