Форум » Дискуссии » Российские военные спутники » Ответить

Российские военные спутники

milstar: 1.Оптической/видовой разведки -------------------------------------- Платформа КА «Персона» базируется на КА «Ресурс-ДК http://www.ntsomz.ru/ks_dzz/satellites/resurs_dk1 Спутники используют круговую солнечно-синхронную орбиту наклонением 98° и высотой 750 км Срок активного существования 7 лет Общая масса спутника превышает 7 тонн Планирумый запуск Персона № 2 22.05.2013 РН «Союз-2.1б Плесецк ПУ № 4 площадки № 43 Планирумый запуск Персона № 3 Стоимость создания первого спутника оценивается в 5 млрд рублей 2. ... связи ----------------- КА «Гарпун» (индекс ГУКОС — 14Ф136) — военные спутники-ретрансляторы (СР), создаваемые для обеспечения оперативной ретрансляции больших объёмов цифровой информации с КА радиотехнической и видовой разведки Предшественник КА Поток Гарпун №1/Космос-2473 21.09.2011 Байконур «Протон-М» Пл. 81/24 80° в.д Так как новый спутник-ретранслятор призван заменить СР «Поток», то он, предположительно, будет использовать те же самые частоты и орбитальные позиции, что и КА «Поток» (POTOK-1 — 13,5°з.д., POTOK-2 — 80°в.д. и POTOK-3 — 168°в.д. КА «Меридиан» построен на базе усовершенствованной платформы Ураган-М, используемой в т. ч. на КА «Глонасс-М». Вес спутника составляет более 2000 кг. Срок активной эксплуатации КА «Меридиан-М» составляет 7 лет. Меридиан-М №18Л 30.07.2019 Меридиан-М №19Л 20.02.2020 live track Meridian-M 9 (No.19L) https://www.n2yo.com/?s=45254 Меридиан-М №20Л 22.03.2022 3 ... радиотехнической разведки (РТР) ------------------------------------------ КА «Лотос-С» 20.11.2009 14Ф138 «Лотос-С» Космос-2455 Плесецк СК 16/2 Союз-У План — до конца 2013 14Ф145 «Лотос-С1» 14Ф138 (Космос-2455) — первый из запущенных спутников пассивной РТР «Лотос-С», с неполной комплектацией целевой аппаратуры; 14Ф145 — спутники улучшенной серии «Лотос-С1» имеющие полный штатный комплект целевой аппаратуры. В составе с ракетой-носителем 14А14 «Союз-2» образует космический комплекс 14К159 Спутник создан кооперацией ЦНИРТИ (г. Москва), Машиностроительного завода «Арсенал» (г. Санкт-Петербург) и «ЦСКБ-Прогресс» (г. Самара). Гироскопические приборы для спутников созданы в НИИ Командных приборов (г. Санкт-Петербург)

Ответов - 160, стр: 1 2 3 4 5 6 7 8 All

milstar: The XIPS-25, or 25-cm Xenon Ion Propulsion System, is a gridded ion thruster manufactured by L-3 Communications. XIPS-25 engine is used Specific Impulse (s) 3400 3500 https://www.daviddarling.info/encyclopedia/X/XIPS.html The larger 702 model is 25 centimeters in diameter, uses 4,500 W, has a specific impulse of 3,500 sec, and gives a thrust of 165 millinewtons. A typical satellite uses up to four XIPS thrusters (two primary, two redundant) for station-keeping, all connected to the same xenon supply. Each primary device is switched on and off by a smart power unit that monitors and diagnoses operations automatically. In normal operation, a 601HP thruster operates for about 5 hours per day, a 702 for about 30 minutes per day.

milstar: Система военной космической связи для европейского ТВД на базе орбиты Тундра a. тест спутник b. система из 2 спутников - полное перекрытие с высокими углами мeста c. повышение боевой устойчивости + 2 спутника с высокими углами места 1. отношение массы топлива для компенсации дрейфа восходящего узла к общей массе спутникa параметры орбиты a- 42164, 4е- 0.35,i-63.435 ,A-56921,Ha-50543,P-27406,Hp-21028.6,T= 23 час 46 мин ,4 сек компенсация прецессии восходящего узла выполняется в апогее v^2= mju*(2/(a*1.35) -1/a) скорость в апогее-2133.5 метрa в секунду Non-spherical Earth Perturbation - RAAN calculator https://www.vcalc.com/wiki/MichaelBartmess/Non-spherical+Earth+Perturbation+-+RAAN 2.83 градусa в год 42.5 градусa за 15 лет nodal change Страница 20 https://smd-cms.nasa.gov/wp-content/uploads/2023/05/GDC_OrbitPrimer.pdf cos alfa=cos^2 (63.435) + sin²(63.435)* cos (42.5)=37.83 град Δ𝑉 = 2𝑉𝑖 *sin(Δ𝛼/2 ) = 1383 метрa 𝑀𝑃/𝑀𝑖= 1 − 𝑒^(−Δ𝑉/𝑔𝐼𝑠𝑝)

milstar: Борисов сообщил, что ПО "Полет" сможет производить до восьми ракет "Ангара-А5" в год "Максимальные производственные мощности - около восьми тяжелых ракет "Ангара-А5" плюс легкие ракеты "Ангара-1.2" - это очень серьезный объем товарной продукции. Я думаю, что мы в ближайшее время, год-полтора, завершим реконструкцию и выйдем на максимальные проектные мощности", - привели слова Борисова в пресс-службе Роскосмоса. Гендиректор госкорпорации поблагодарил коллектив предприятия за их труд. "Сегодня нам действительно есть, чем гордиться. ПО "Полет" превратилось в новую производственную площадку с новыми корпусами и, самое главное, с оптимистичным будущим. Вы изготавливаете основной носитель для нашего основного заказчика - Министерства обороны РФ", - добавил он. https://vpk.name/news/821904_borisov_soobshil_chto_po_polet_smozhet_proizvodit_do_vosmi_raket_angara-a5_v_god.html


milstar: Satellite operators and satcom hardware manufacturers are presently engaged in serious exploratory work regarding the use of extremely high frequency [EHF] bands for various applications, including to improve inflight connectivity for civil aviation. “Viasat sees great potential for using extremely high frequency bands for a variety of innovative satellite-based communications solutions and we’ve worked with regulators to develop policies to enable these solutions to come to market,” the Carlsbad, California-based firm told Runway Girl Network when asked if Viasat is eyeing EHF for inflight connectivity. In April 2020, Viasat received FCC approval to operate a 20-satellite Medium Earth Orbit (MEO) constellation using Ka-band and V-band spectrum. For its part, Washington DC-headquartered Intelsat said it is “always innovating” when asked about using EHF for IFC, and whether antennas for Q- and V-band frequencies (37.5-42.5 GHz and 47.2-51.4 GHz) might one day augment Ku or Ka antennas. “We are currently developing a number of promising technologies and will bring them to market when they are mature enough to thrive in the marketplace,” said the satellite operator. As is so often the case in aircraft communications, the US government has already established precedent for using higher millimeter-wave frequency bands. The United States Space Force operates a nextgen constellation of Advanced Extremely High Frequency (AEHF) satellites at 44 GHz uplink, and these are used to relay secure communications for a variety of allied armed forces around the world. Last year, a company which has seen its unique Ku-band mechanically-steered phased array antenna installed on over 1550 commercial aircraft — ThinKom Solutions — announced the successful completion of over-the-air testing of a pair of K/Q-band antennas communicating through an AEHF satellite. “The burden of proof was on us, so we pushed all sorts of data rates” to show government that the antennas, which are based on ThinKom’s patented Variable Inclination Continuous Transverse Stub (VICTS) architecture, met or exceeded all performance metrics for operating effectively with the frequency-hopping waveform of the AEHF network, company chairman and chief technology officer Bill Milroy told Runway Girl Network in an in-depth interview. “We’ve actually flown Q-band on test aircraft and have a production program we’re producing those for and those will actually be — in that particular platform — embedded,” he said regarding the conformal flat-panel VICTS antennas being cavity-mounted for military aircraft, which, believe it or not, is the type of scenario that might one day emerge in civil aviation. “We love the Humpspotter thing”, said Milroy in reference to the aviation geek pastime of identifying IFC solutions on commercial aircraft based on their fuselage-mounted radomes, “but the whole idea here is to have no hump spot” in certain government and military applications. Outside of this work, ThinKom is eager to support the nascent market for commercial aviation applications in the Q- and V-band frequencies, which have been designated for adoption by satellite operators in LEO, MEO, GEO and HEO. Its new low-profile, VICTS-based Q/V-band antennas will be offered in configurations for aeronautical and ground-based fixed and mobile applications. “This new phased-array development is timed to fully enable the upcoming frequency revolution that promises to unlock massive new available bandwidth at these higher MMW [millimeter-wave] frequencies for next-generation LEO and MEO satellite constellations,” declared Milroy in a press statement. The company has reason to be optimistic. In addition to Viasat, a raft of satellite operators — including OneWeb and SpaceX — in recent years have received the green light from the FCC to use V-band satellites in non-geostationary orbit (NGSO). In granting authority for Viasat to operate a 20-satellite MEO constellation using Ka-band and V-band spectrum, the FCC said: “Viasat is a well-established provider of broadband communications using a fleet of Ka-band geostationary satellites, and the addition of the proposed non-geostationary space stations operating in the V-band as well as Ka-band will provide Viasat with an alternative means to better serve American customers with more broadband capacity.” Broadly speaking, EHF bands can be used in various applications. For instance, moving gateway antennas to Q- and V-bands frees up Ku-band and Ka-band spectrum for increased user capacity, allowing greater access to connectivity for these users, Satellite Today reported in 2017. Milroy agrees, telling RGN that ThinKom is indeed pursuing gateway work. “So the Q- and V-bands can be used and the most common way to use them is for the gateways to talk to the satellites … But regulatory-wise those are approved for all sorts of operations including for user beams as well.” He said in a press statement: The new [ThinKom] user terminals will include uninterrupted ‘make-before-break’ (MbB) and ‘break-before-make’ (BbM) connectivity options, depending on the requirements of a given application. The MbB terminals will support two simultaneous full-duplex beams that can be independently pointed at two different satellites. The LEO and MEO satellites move rapidly across the sky from horizon to horizon, so the multi-beam capability of the new ThinKom MbB terminal ensures uninterrupted services while switching between rising and setting satellites. It also allows multiple satellites or channels to be bonded, either within the same or even across different constellations, doubling throughput capability. The antenna also supports full frequency and polarization diversity, which is another key enabler for maximizing satellite throughput. But what about the inflight connectivity application, specifically? Milroy told RGN that he doesn’t expect anybody involved in “aircraft or ground” comms to move solely to Q- or V-band. “I think it will be in addition” to Ku or Ka. “[W]e know a lot who are thinking of adding Q or V.” Augmenting Ku or Ka IFC with Q/V For narrowbody and widebody aircraft with Ku- or Ka-band IFC hardware already installed in support of passenger connectivity, Milroy said it’s far more likely that Q- or V-band would augment these solutions. If, for example, an operator were to migrate from Ku- to Ka-band IFC with the latter’s smaller antennas, whilst retaining the radome footprint, that would free up room in the footprint to add Q/V, said Milroy, as ThinKom believes a 10-12-inch diameter range is sufficient for these latter bands. In practical terms, if an airline decided to gravitate from the Intelsat (formerly Gogo) 2Ku IFC installation — which features ThinKom’s Ku2020 VICTS antenna in an ARINC 791 footprint — to Intelsat’s “2Ka” configuration with ThinKom’s Ka2517 VICTS antenna, it could opt to tuck in a Q- or V-band antenna under the radome during an overnight install, exploiting both the additional bandwidth provided and the antenna’s ability to roam between NGSO and GSO satellites. (Incidentally, Milroy said the firm is fielding interest in 2Ka. However, John Wade, the president of Intelsat’s commercial aviation vertical, recently told RGN that Intelsat doesn’t see a need for the 2Ka product in the short-term. “It’s ready on the shelves should we need it.”) Challenges of EHF The use of EHF frequencies “can provide the advantage of large bandwidth availability but also smaller antenna size for a fixed gain, or conversely, higher antenna gain for a fixed size”, noted IEEE in a 2016 report. But one of the main drawbacks that limits the use of these frequencies is represented by the strong impairments caused by the lower part of the atmosphere. The frequencies are prone to signal propagation, and more susceptible to rain fade. Propagation impairment mitigation is needed and could take the form of Adaptive Coding and Modulation (ACM), warned the association. “We’re talking about wavelengths that are a quarter inch [with Q/V], so you could have periods of outages,” explained Milroy. “Ku is better than Ka in that regard and Ka is better than Q and V in that regard, but then you build more rain margin into the link budget so for that 1% of the time that you have a lot of rain propagation, you use ACM to run at a lower data rate. When you’re above the clouds, there is no disadvantage of Q and V bands…above 10K ft. So maybe you’d want to consider adding Q and V, rather than swapping out.” In terms of next steps for satellite operators, Milroy told RGN: “I think the way this will likely get started is hosted payloads first. You won’t have a satellite that is Q or V only, but you’ll start to see Q and V packages that support eight beams over CONUS or something like that, added to the payload, or launched as a carry-on hosted payload with the same satellite. That’s kind of how Ka got started. They added Ka experimentally to start.” From a hardware standpoint, ThinKom believes its VICTS antenna is uniquely positioned to support communications over EHF, given the “efficiency, packaging, power density, thermal management and cost” challenges that multi-band electronically steered antennas (ESAs) face in higher MMW bands. “This is an area we feel very comfortable with,” he said, reiterating that “we’ll be flying Q-band stuff on government aircraft soon.” https://runwaygirlnetwork.com/2021/07/ehf-bands-for-inflight-connectivity/

milstar: https://www.researchgate.net/figure/Summary-of-rain-attenuation-suffered-by-satellite-signals_tbl4_270081444 rain attenuation C,X,Ku band https://www.researchgate.net/publication/270081444_A_study_on_the_effects_of_rain_attenuation_for_an_X-band_satellite_system_over_Malaysia#pf4 Satellite Slant Range calculator Equation https://www.rfwireless-world.com/calculators/satellite-slant-range-calculator.html

milstar: Design and Performance of X-Band SAR Payload for 80 kg Class Flat-Panel-Type Microsatellite Based on Active Phased Array Antenna https://www.mdpi.com/2226-4310/9/4/213

milstar: TSO 102 D/X is an X band Phased Array Antenna based unit designed for communications with military satellites operating in X band and for being deployed either in tactical ground or on-board armoured vehicles. The unit has been widely used for vehicle and general ground application, military use, where communication on the move is a mandatory requirement. Maximum Reliability is assured by a combination of electrical and mechanical beam steering. Dynamic platform compensation for roll, pitch and yaw is provided by an attitude heading reference system. An advanced antenna tracking system allows rapid satellite acquisition and tracking. Motorized mechanical setup elevation can be used to incline the antenna to optimise performance in extreme looking angle conditions. To achieve this, the antenna will tilt during warm-up, depending on the geographic position. https://electronics.leonardo.com/documents/16277707/18389579/TSO_102DX_LQ_mm08001_.pdf?t=1538987821947TSO 102 D/X is an X band Phased Array Antennabased unit designed for communications withmilitary satellites operating in X band and for beingdeployed either in tactical ground or on-boardarmoured vehicles. The unit has been widely used forvehicle and general ground application, military use,where communication on the move is a mandatoryrequirement.Maximum Reliability is assured by a combination ofelectrical and mechanical beam steering. Dynamicplatform compensation for roll, pitch and yaw isprovided by an attitude heading reference system.An advanced antenna tracking system allows rapidsatellite acquisition and tracking.Motorized mechanical setup elevation can be usedto incline the antenna to optimise performance inextreme looking angle conditions. To achieve this, theantenna will tilt during warm-up, depending on thegeographic position. https://electronics.leonardo.com

milstar: USAT ground stations were designed to support a wide variety of applications. Configured with a 1Watt transmitter and .6m antenna the USAT could support 2-4 Mbps between stations with adequate margin. https://ntrs.nasa.gov/api/citations/20010019784/downloads/20010019784.pdf n order to provide reliable communications, compensation must be provided for the loss of stren.gth, or fading, of the Ka band signal due to ram. Two techniques are used on the ACTS satellite: Increased output of the transmitters and the use of data rate https://ntrs.nasa.gov/api/citations/19960001913/downloads/19960001913.pdf

milstar: . In 1998, the Naval Research Lab used ACTS to achieve a Navy record 45Mbps uplink data rate for a ship at sea using a Xicom TWTA on a one-meter tracking antenna aboard a 45ft yacht. https://www.satelliteevolutiongroup.com/GMC/articles/Ka-band-2021.pdf

milstar: For the creation of a multiple spot beam scenario with overlapping spots, the antenna system is a key component. Two basic principles are possible. Single feed per beam (SFB) designs use one feed horn for each spot. Advantages are hardware simplicity and a slightly better electrical performance, but at the expense of an increased number of apertures. To provide overlapping spots, in this case several reflector apertures, typically four, are required. Often, it is also possible to create a four colour scenario using only three reflectors. Additionally designs using a single oversize shaped reflector [1], passive [2] or active [3] lenses are possible as well. Multiple feeds per beam (MFB) designs use small sub-arrays for each spot. Adjacent spots share some of the array elements. In this case, overlapping feed arrays are created, which allow producing overlapping spots using a single reflector aperture. The elements of the array are fed by a complex orthogonal beam forming network. https://link.springer.com/article/10.1007/s12567-011-0012-z

milstar: https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-map.2015.0811

milstar: For example: It has been shown that an array of 1225 elements has a directivity > 40 dB and if each element radiates 1W, the target EIRP https://ntrs.nasa.gov › api › citations › 20170002617 › downloads › 20170002617.pdf?attachment=true Space-Based Ka-Band Direct Radiating Phased Array Antenna Architecture ... # A.K. Bhattacharyya, "Optimum Design Consideration for Multiple Spot Beam Array Antennas," 22nd AIAA Inter. Communications Satellite Systems Conf. & Exhibit, Paper Number AIAA 2004-3158, At such a distance, the Earth subtends a small conical angle of θ = ±8.7°. Consequently, the phased array onboard the relay satellite has to scan a limited field of view (LFOV)

milstar: https://interactive.satellitetoday.com/satellite-link-budget-for-a-nonlinear-bent-pipe-transponder/ Satellite Link Budget for A Nonlinear Bent-Pipe Transponder https://apps.dtic.mil/sti/tr/pdf/ADA295576.pdf The last receive configuration is the most expensive one of the three discussed in this report. It uses a combination switches and weights and requires the use of amplifiers and downconverters. This configuration has a very low loss and can have low side lobes of around -30 dB. It can accept a large number of active beams

milstar: https://www.nasa.gov/smallsat-institute/sst-soa/power-subsystems/ 3.2 State-of-the-Art – Power Generation

milstar: VIASAT DUAL-BAND SOLUTION For light aircraft and military applications https://www.viasat.com/content/dam/us-site/government/documents/Viasat_Gov_Dual_Band_datasheet_009_web_1082610.pdf

milstar: https://ntrs.nasa.gov/api/citations/20150006717/downloads/20150006717.pdf

milstar: https://innoter.com/articles/voennye-kosmicheskie-sputniki-ssha/

milstar: https://matveynator.ru/f/7840b4c60e4e13228c8f92c913543019.pdf На высотах 20000−50000 км наряду с возмущениями от нецентральности гравитационного поля Земли нужно учитывать лунно-солнечные возмущения, действие которых становится превалирующим на высотах более 50000 км

milstar: Предположим, что имея космодром в точке А (рис. 3.17), мы желаем вывести спутник на эллиптическую орбиту с апогеем, расположенным над точкой А. Разогнав спутник до круговой скорости в точке В, мы выведем его на низкую промежуточную орбиту 1. Если теперь сообщить спутнику в точке С приращение скорости, включив двигатель новой ступени или повторно включив предыдущую ступень, то спутник перейдет на эллиптическую орбиту с апогеем), расположенным над А. Подобный прием используется при запусках советских спутников связи типа «Молния», апогей которых должны располагаться на высоте приблизительно 40000 км непременно над северным полушарием (но, конечно, не обязательно над космодромом). Трудность такого запуска в том, что точка С находится вне зоны радиовидимости радиолокационных станций слежения. https://helpiks.org/1-122920.html

milstar: Вооруженная борьба в космосе: преемственность и различия принципов тактики 12 Апреля 2023 06:00 ВОЕННАЯ МЫСЛЬ №4-2023 ВОЕННОЕ ИСКУССТВО Генерал-лейтенант А.П. КОВАЛЁВ, доктор технических наук Полковник С.А. СОТНИК, кандидат военных наук Подполковник Д.С. СОТНИК, доктор военных наук АННОТАЦИЯ Рассматриваются роль и место космических средств в военном деле на современном и перспективных этапах его развития, предпосылки к развертыванию в космосе боевых систем, классификация космического оружия, определение космоса как театра военных действий, взгляды авторов на особенности тактики Военно-космических сил и преемственность положений тактики ВКС относительно положений Общей тактики ВС. https://vm.ric.mil.ru/Stati/item/484129/



полная версия страницы