Форум » Дискуссии » Российские военные спутники » Ответить

Российские военные спутники

milstar: 1.Оптической/видовой разведки -------------------------------------- Платформа КА «Персона» базируется на КА «Ресурс-ДК http://www.ntsomz.ru/ks_dzz/satellites/resurs_dk1 Спутники используют круговую солнечно-синхронную орбиту наклонением 98° и высотой 750 км Срок активного существования 7 лет Общая масса спутника превышает 7 тонн Планирумый запуск Персона № 2 22.05.2013 РН «Союз-2.1б Плесецк ПУ № 4 площадки № 43 Планирумый запуск Персона № 3 Стоимость создания первого спутника оценивается в 5 млрд рублей 2. ... связи ----------------- КА «Гарпун» (индекс ГУКОС — 14Ф136) — военные спутники-ретрансляторы (СР), создаваемые для обеспечения оперативной ретрансляции больших объёмов цифровой информации с КА радиотехнической и видовой разведки Предшественник КА Поток Гарпун №1/Космос-2473 21.09.2011 Байконур «Протон-М» Пл. 81/24 80° в.д Так как новый спутник-ретранслятор призван заменить СР «Поток», то он, предположительно, будет использовать те же самые частоты и орбитальные позиции, что и КА «Поток» (POTOK-1 — 13,5°з.д., POTOK-2 — 80°в.д. и POTOK-3 — 168°в.д. КА «Меридиан» построен на базе усовершенствованной платформы Ураган-М, используемой в т. ч. на КА «Глонасс-М». Вес спутника составляет более 2000 кг. Срок активной эксплуатации КА «Меридиан-М» составляет 7 лет. Меридиан-М №18Л 30.07.2019 Меридиан-М №19Л 20.02.2020 live track Meridian-M 9 (No.19L) https://www.n2yo.com/?s=45254 Меридиан-М №20Л 22.03.2022 3 ... радиотехнической разведки (РТР) ------------------------------------------ КА «Лотос-С» 20.11.2009 14Ф138 «Лотос-С» Космос-2455 Плесецк СК 16/2 Союз-У План — до конца 2013 14Ф145 «Лотос-С1» 14Ф138 (Космос-2455) — первый из запущенных спутников пассивной РТР «Лотос-С», с неполной комплектацией целевой аппаратуры; 14Ф145 — спутники улучшенной серии «Лотос-С1» имеющие полный штатный комплект целевой аппаратуры. В составе с ракетой-носителем 14А14 «Союз-2» образует космический комплекс 14К159 Спутник создан кооперацией ЦНИРТИ (г. Москва), Машиностроительного завода «Арсенал» (г. Санкт-Петербург) и «ЦСКБ-Прогресс» (г. Самара). Гироскопические приборы для спутников созданы в НИИ Командных приборов (г. Санкт-Петербург)

Ответов - 160, стр: 1 2 3 4 5 6 7 8 All

milstar: ESS is a classified satcom system designed to operate in the event of a nuclear war. Boeing and Northrop Grumman are developing competing satellite designs. The Pentagon plans to spend $6.5 billion on the ESS program over the next five years. The ESS satellites are intended to augment and eventually replace the Advanced Extremely High Frequency (AEHF) network of nuclear-hardened geostationary satellites made by Lockheed Martin. Northrop Grumman developed the AEHF XDR (Extreme Data Rate) payload. https://spacenews.com/lockheed-raytheon-to-develop-ground-systems-for-nuclear-hardened-satellite-communications/

milstar: From figure 3.1, we see that an airborne terminal with a 2 ft antenna yields an available Eb/No of -1 dB approximately, at a data rate of 300 Mbps. Because of this low Eb/No, it is clear that this terminal cannot achieve 300 Mbps for the modulation/coding choices shown in figure 4.1. However, from the Shannon bound in this figure, we note that at Eb/No = -1 dB, the best possible spectral efficiency is 0.3 bps/Hz. This theoretical performance could be approximated in practice with a combination of robust modulations and very powerful modern error-correction codes, e.g., turbo or low density parity-check codes, albeit at the expense of increased computational complexity. For example, use of 64-ary orthogonal modulation with coherent detection at the receiver along with forward error-correction provided by a turbo PCCC with a block length of about 5000 bits, requires an Eb/No of -1 dB approximately, for a BER = 10 -5 . However, this combination of modulation/coding has a spectral efficiency of only 0.094 bps/Hz, since M-ary orthogonal modulations are power efficient but not bandwidth efficient. In this case, transmission at a rate of 300 Mbps would require 3.1915 GHz of bandwidth, which far exceeds the total Ka-bandwidth available on the uplink. The conclusion is that the waveform alone cannot provide this high data rate capability to airborne terminals with 2- ft antennas, for the baseline system parameters used in this paper. In order to make possible for airborne terminals with antennas smaller than 4 ft to be able to close the link at the high end data rates, e.g., 300 Mbps, some of the terminal and system parameter would have to be changed, such as the terminal EIRP or the satellite beam G/T. However, increasing the terminal EIRP would require the power amplifier to be able to provide more than the baseline 250W. With the current state of technology, this is very difficult to implement at Ka-band frequencies because of size, weight, and cost constraints. With respect to the satellite G/T, the gain G would have to be increased by 6 dB in order for the available Eb/No to increase from -1 db to 5 dB, so that an airborne terminal with a 2 ft antenna can close the link at 300 Mbps, using the modulation/coding choices of figure 4.1. However, an increase of 6 dB in gain requires that the antenna be doubled in diameter. https://www.mitre.org/sites/default/files/pdf/06_1018.pdf

milstar: "В наших ближайших планах – улучшить работу системы связи, повысить эффективность применения современных средств ведения разведки, целеуказания и контрбатарейной борьбы, а также возможности противовоздушной обороны и спутниковой группировки", – заявил во вторник, 9 января, министр обороны Сергей Шойгу на селекторном совещании с руководящим составом ВС РФ.


milstar: EKS: Russia’s space-based missile early warning system by Bart Hendrickx Monday, February 8, 2021 https://www.thespacereview.com/article/4121/1 The dry mass of the UKP bus ranges from 950 to 1,200 kilograms. The payload mass for HEO satellites is between 500 and 1,000 kilograms and for GEO satellites between 250 and 300 kilograms. The design lifetime is given as at least 7.5 years for the HEO satellites and up to 12.5 years for the GEO satellites. This is probably due to the fact that HEO satellites regularly pass through the Van Allen radiation belts.[3] Weighing 3.5 kilograms, each of the engines has a thrust of 83 millinewtons and a specific impulse of 1600 seconds. [6] They probably assist in countering some of the perturbations to which Molniya-type orbits are susceptible due to the oblateness of the Earth and gravitational effects from the Moon and the Sun. So why did the Russians decide to stick to this seemingly outdated technology? The aforementioned PhD dissertation claims that cryogenically cooled infrared vidicons still have a better performance than solid-state sensors, are cheaper to produce, and can better withstand radiation, singling out the LI489 vidicon as an example of that. On the other hand, a Kometa paper published in 2016 said the further development of infrared vidicons for “space-based detection systems” had been terminated because they don’t meet today’s requirements for “reliability, mass and size” and also because of their insufficient sensitivity and the low number of pixels used.[14] One source told the TASS news agency in May 2016 that a single Angara-A5 could orbit “two to three” early warning satellites, but two would be the absolute limit considering the payload capacity of the Angara-A5 from Plesetsk. The Granat-128 detectors appear to be the subject of several technical publications by NPO Orion (although they are not mentioned there by name). They are mercury cadmium telluride (HgCdTe) detectors with a 1024x10 pixel array. The spectral range is given both as 1–3 microns and 2–3 microns.[25] The new scanning payload uses a readout technique called “time delay integration” (TDI) and has a beryllium mirror coated with gold to improve reflection in the infrared range. It has a global view and can scan the Earth’s disk in 4.2 seconds. [27] The CCD-based photodetectors (called FPU-4P and FPU-4A) have 768x580 and 1024x1024 pixel arrays and operate in the UVC part of the ultraviolet spectrum, which is almost completely absorbed by the ozone layer. This means that such sensors (also called “solar-blind photodetectors”) can easily spot missile plumes due to the absence of a terrestrial background signature. Other work related to the third phase of EKS is called LSS-GSO and involves a system called 15E1818 developed jointly by NPO Impuls and NPK SPP.[29] This could well be a laser communications system to be used for intersatellite links and/or high-speed downlink of data (with “LSS” and “GSO” being the likely Russian abbreviations for “laser communications system” and “geostationary orbit”). NPK SPP is no newcomer to that field, having already built a laser communications system to beam data from the Persona optical reconnaissance satellites to the Geyzer military data relay satellites. One potential use of the system could be for the satellites to quickly exchange data obtained by their nuclear detection payloads. An earlier mentioned paper on the nuclear detection payloads (see source 21) noted that an intersatellite laser communications system would be a possible way of increasing the accuracy of the observations. The first EKS/Tundra satellite, officially announced as Kosmos-2510, was finally launched from Plesetsk on November 17, 2015. Three more launches followed on May 25, 2017 (Kosmos-2518), September 26, 2019 (Kosmos-2541) and May 22, 2020 (Kosmos-2546). The satellites were all placed into highly elliptical 12-hour Molniya-type orbits with perigees ranging from about 1,400 to 2,000 kilometers, an apogee around 38,000 kilometers and an inclination of about 63 degrees. The satellites have two daily apogees during which they spend several hours hovering high above the Northern hemisphere. One is located approximately over Greenland and the other above Russia’s Far East. Since the eastern control center for EKS does not appear to be ready yet, the satellites probably only perform observations from the “western” apogee. This is situated farther to the west than that of the Soviet HEO satellites. In an interview published in December 2019, Deputy Defense Minister Aleksei Krivoruchko claimed EKS can detect not only launches of intercontinental and submarine-launched ballistic missiles, but also of intermediate range missiles, short range missiles and space rockets. He said that at the time it had already detected 64 launches of ballistic missiles (including 35 non-Russian missiles) and 136 space launches (including 97 non-Russian launches). Krivoruchko described EKS “as good as” America’s Satellite-Based Infrared System (SBIRS) and “unique” in its ability to relay information in real time to the country’s leadership and the Armed Forces.[43] When placing EKS on an equal footing with SBIRS, Krivoruchko must have been talking about EKS in its final configuration. In terms of the sheer number of available sensors, SBIRS currently far exceeds EKS. It consists of four GEO satellites each carrying both a scanning and staring sensor and three scanning sensors hosted on HEO satellites. In addition to that, some of the older DSP geostationary early warning satellites are also still operational. By comparison, EKS has four HEO satellites with a staring sensor that likely uses 20th century vidicon technology rather than the proclaimed “infrared sensors of a new generation”. The SBIRS scanning sensor is intended for continuous observation and surveillance of traditional intercontinental ballistic missile threats, while the staring sensor, which has a relatively small field of view, is designed to detect very low signature, short-burn-duration theater missiles. Possibly, the Irtysh-E camera is supposed to accomplish similar tasks in its wide-angle and narrow-angle mode, but it is hard to say whether it can do this as effectively as the combination of sensors flown on the American satellites. The current EKS constellation clearly does not have the global coverage provided by SBIRS. At least one critical area that does not seem to be covered is the Pacific. This will have to wait until the eastern control center reaches operational status. Although the HEO satellites could theoretically observe this region from their eastern apogee, the Russians may elect to do this with one or more of the GEO satellites. In short, it is probably safe to say that the Russians will need to deploy their full constellation of HEO and GEO satellites with a combination of staring and scanning sensors to match the capabilities of SBIRS.

milstar: The status of Russia’s signals intelligence satellites https://www.thespacereview.com/article/4154/1 All things considered, Russia’s space-based SIGINT effort is lagging far behind that of the United States and China. Long delays in the Liana program are severely impacting Russia’s ability to collect accurate targeting data for its latest generation of anti-ship missiles and a replacement system (Akvarel) is likely still many years away from deployment. The Liana system does not appear to have a significant (if any) COMINT capability, a situation that will not be rectified until the first Repei satellites are launched in the coming years. In addition to that, Russia is relying on a pair of aging satellites for optical reconnaissance and currently does not have any radar reconnaissance satellites in orbit that can see through cloud cover and make nighttime observations.[30] All this leaves the country’s present space-based intelligence gathering capability in a state that leaves much to be desired.

milstar: the TAP orbit has three apogees separated by 120 ° . Trishchenko et al. (2011) suggested the following central longitudes for apogees: 95 ° W (North America), 25 ° E (Europe), 145 ° E (Eastern Siberia).

milstar: https://docslib.org/doc/2022059/three-apogee-16-h-highly-elliptical-orbit-as-optimal-choice-for-continuous-meteorological-imaging-of-polar-regions http://www.aim-north.ca/docs/Trishchenko_Molniya_JAOT_2011.pdf

milstar: to: https://vm.ric.mil.ru/Redkollegiya to : copy for information to : office@iss-reshetnev.ru KSA@iss-reshetnev.ru copy for information to : re: "В наших ближайших планах – улучшить работу системы связи Сергей Шойгу 9 января ,военные системы космической связи 16 часовые орбиты ,расчет пропускной способности ISR communications возможности Российского ВПК диапазон Х наибольшие "В наших ближайших планах – улучшить работу системы связи, повысить эффективность применения современных средств ведения разведки, целеуказания и контрбатарейной борьбы, а также возможности противовоздушной обороны и спутниковой группировки", – заявил во вторник, 9 января, министр обороны Сергей Шойгу на селекторном совещании с руководящим составом ВС РФ. 1.Авторы статей из Канады предлагают 16 часовые орбиты comprehensive Arctic observing system it enables continuous coverage of the entire Arctic region (588–908N) froma constellation of two satellites. подобные разработки явно есть в ИСС Решетнева .если использовать 3 орбитальных планa два спутникa на каждом 3x2=6, долготы апогеев и соответственно восходящих узлов те же которые указаны в статье 25 E 145 E, 95 W то получится вариант орбита Молния с тем же временем задержки прохождения сигнала при e=0.44 , временем существования 12 вместо 7 лет Меридиан М, a=32177,e=0.44 ,T=57442 sek P =18019... 11641 over earth A= 46335 ...39957 over earth t= 28721 все апогеи одновременно , выполняется освещение с углами мeста в круге диаметром с центром от проекции спутника на землю за 4 часа до апогея 71.56 grad - 3395 km Бой в городской застройке .При ширине улицы 10 метров и высотe зданий 30 метров спутник будет виден с одной из сторон улицы в это время восходящей спутник будет на широте lat = 39.443 grad отставать от точки апогея 25 E пo долготе на 5.75 grad через 4 часа отставание пo долготе будет равно 0 lat =63.4 14.01.24,Путин заявил, что будущее России за Дальним Востоком и Арктикой На дальнем востоке тоже самое апогей 145 в.д в Красноярске 56°00 с. ш. 93 в.д ( 52 градуса пo долготе от долготы апогея 145 в.д = 29 grad) будет угол места около 50 grad Новосибирск 55°01′ с. ш. 82°55′ в. д.(58 град пo долготе от долготы апогея 25 в.д =33.26 ) будет угол места около 45 grad Петропавловск-Камчатский 53°01′N 158°39′E будет угол места около 70 grad comprehensive Arctic observing system Canada is currently proposing to operate such a constellation by 2017. page 1412 apogee location can be selected at 95grad W. This choice determines remaining apogees to be located at 25 grad E and 145grad E, which provide very good views over Eurasia. https://docslib.org/doc/2022059/three-apogee-16-h-highly-elliptical-orbit-as-optimal-choice-for-continuous-meteorological-imaging-of-polar-regions page 1415 from analysis of the orbital data for Molniya satellites. On an annual basis the perigee drift could be from 1 from analysis of the orbital data for Molniya satellites. On an annual basis the perigee drift could be from 1 to 2 grad .The analysis of the two-line element (TLE) orbital data for the Sirius XM satellites on the 24-h Tundra at critical inclination also reveals the existence of a perigee drift < 1 grad annual basis http://www.aim-north.ca/docs/Trishchenko_Molniya_JAOT_2011.pdf -------------------------- 2. расчет пропускной способности Waveform Design For Ka-band SATCOM High Data Rate Links The MITRE Corporation We first present the general guidelines and capabilities required to satisfy typical ISR communications as well as other C2 communications applications The Ka-band offers considerable amounts of bandwidth (about 1 GHz on the uplink and downlink for each commercial and military systems) https://www.mitre.org/sites/default/files/pdf/06_1018.pdf .... X-band receive (7.25 to 7.75 GHz) is only separated by 150 MHz from X-band transmit (7.9 to 8.4GHz), полoса в два раза меньше 500 mhz, есть и плюсы 1. используется в военных системах связи a.WGS-10 (USA-291) was launched 16 March 2019 serve the armed forces of the United States and its allies. It carries Ka-band and X-band transponders with 8.088 gigahertz of bandwidth – offering downlink speeds of up to 11 gigabits per second. b,https://xtar.com/comparo/ https://xtar.com/pdfs/SatComparo.pdf Frequency Bands X, mil-Ka, UHF Nuclear Hardened Yes #################### Service Availability 2024/25 X-band’s extreme resistance to rain attenuation is matched by its extreme resistance to attenuation from sandstorms and airborne dust, both very real concerns in today’s theatres of operation.” https://www.satelliteevolutiongroup.com/articles/x-band.pdf Some DoD program offices have already taken advantage of X- band SATCOM. The US Navy’s MQ-4C Triton UAV, for example, is a more capable, all-weather variant of the US Air Force’s older RQ-4 Global Hawk. The UK’s Protector UAV is a more lethal, all-weather X-band variant of the Sky Guardian/Certifiable Predator-B UAV. 2. в Малайзии исследование показало при углах места 75 градусов ,диаметр антенны 1.8 метра и дожде 200 миллиметров в час ( в России рекорды 70 миллиметров в сутки) канал видео работоспособен 3. возможности Российского ВПК диапазон Х наибольшие ------------------------------------------------------------------------------------------------ such as the terminal EIRP or the satellite copy -beam G/T. However, increasing the terminal EIRP would require the power amplifier to be able to provide more than the baseline 250W. для АФАР терминала в диапазоне X диаметром 45 сантиметров и полным заполнением h/2 необходимо 400 ппм средняя мощность приемно передающего модуля от РЛС Су-57 НИИП АФАР - 5 ватт Государство обеспечило технологическое перевооружение фрязинского «Истока», где выпускаются приемо-передающие модули. На Рязанском приборном заводе новый производственный корпус с новым оборудованием From figure 3.1, we see that an airborne terminal with a 2 ft antenna yields an available Eb/No of -1 dB approximately, at a data rate of 300 Mbps. Because of this low Eb/No, it is clear that this terminal cannot achieve 300 Mbps for the modulation/coding choices shown in figure 4.1. However, from the Shannon bound in this figure, we note that at Eb/No = -1 dB, the best possible spectral efficiency is 0.3 bps/Hz. This theoretical performance could be approximated in practice with a combination of robust modulations and very powerful modern error-correction codes, e.g., turbo or low density parity-check codes, albeit at the expense of increased computational complexity. For example, use of 64-ary orthogonal modulation with coherent detection at the receiver along with forward error-correction provided by a turbo PCCC with a block length of about 5000 bits, requires an Eb/No of -1 dB approximately, for a BER = 10 -5 . However, this combination of modulation/coding has a spectral efficiency of only 0.094 bps/Hz, since M-ary orthogonal modulations are power efficient but not bandwidth efficient. In this case, transmission at a rate of 300 Mbps would require 3.1915 GHz of bandwidth, which far exceeds the total Ka-bandwidth available on the uplink. The conclusion is that the waveform alone cannot provide this high data rate capability to airborne terminals with 2- ft antennas, for the baseline system parameters used in this paper. In order to make possible for airborne terminals with antennas smaller than 4 ft to be able to close the link at the high end data rates, e.g., 300 Mbps, some of the terminal and system parameter would have to be changed, such as the terminal EIRP or the satellite beam G/T. However, increasing the terminal EIRP would require the power amplifier to be able to provide more than the baseline 250W. With the current state of technology, this is very difficult to implement at Ka-band frequencies because of size, weight, and cost constraints. With respect to the satellite G/T, the gain G would have to be increased by 6 dB in order for the available Eb/No to increase from -1 db to 5 dB, so that an airborne terminal with a 2 ft antenna can close the link at 300 Mbps, using the modulation/coding choices of figure 4.1. However, an increase of 6 dB in gain requires that the antenna be doubled in diameter. ACTS (Advanced Communications Technology Satellite) 1993-2004 https://www.eoportal.org/satellite-missions/acts#spacecraft The main receiving antenna is 2.2 m in diameter; the main transmit antenna is 3.3 m in diameter spot beams (with 0.3º beam width) EIRP Isolated spot beams: 65 dBW RF power 46 W/channel сейчас мощности в 5 раз больше 230 watt 65 dbw+7 db= 72 dbw https://ntrs.nasa.gov/api/citations/20180004162/downloads/20180004162.pdf 4.Стоимость поддубного военного проекта из 6 спутников 300 миллиардов рублей Стоимость гражданского проекта Экспресс Рв из 4 спутников 100 миллиардов рублей Россия планирует отказаться от обычных 152 mm снарядов использовать управляемый Краснополь стоимость 1 миллиона снарядов Краснополь 3 триллиона рублей 110 миллиардов евро пo сопоставимым ценам это 50 дней интенсивных боевых действий за крупную агломерацию Калининград 54°43′ с. ш. 20°30′ в. д. Минск 53°55′ с. ш. 27°33′ в. д. Петербург 59°57′ с. ш. 30°19′ в. д. Мурманск 68°58′ с. ш. 33°05′ в. д. Нижний Новгород 56°19′37″ с. ш. 44°00′27″ в. д. Казань 55°47′27″ с. ш. 49°06′52″ в. д. Екатеринбург 56°50′ с. ш. 60°35′ в. д. Челябинск 55°09′ с. ш. 61°24′ в. д. Омск 54°58′ с. ш. 73°23′ в. д. Новосибирск 55°01′ с. ш. 82°55′ в. д. Красноярск 56°00 с. ш. 92°52 в. д. Петропавловск-Камчатский 53°01′N 158°39′E

milstar: Comparison of SFB and MFB concept https://link.springer.com/article/10.1007/s12567-011-0012-z Single feed per beam and multiple feeds per beam are complementary concepts. There is no strict assignment of the concepts to different scenarios. However, a few guidelines for the selection shall be given in this section. SFB antennas have a slightly better gain performance than MFB antennas. Therefore for large scenarios, like the one in Fig. 1, on large spacecrafts (e.g. E3000), SFB antennas should be advantageous. However, for very large scenarios, the scan losses can become quite high. In such cases, it should be discussed whether the four SFB antennas can be replaced by four MFB antennas, two for Tx and two for Rx Main advantage of the MFB concept is the need of only two reflectors, one for Tx and one for Rx. On large space crafts both antennas can be accommodated on the same side panel. The second side panel could be used for C- or Ku-band antennas.

milstar: Government Satellite Report (GSR): Hughes and SES recently conducted a test for General Atomics Aeronautical Systems to demonstrate multi-orbit satellite communications for remotely piloted aircraft. Can you tell our readers a bit about this demonstration and what it entailed? Rick Lober: This was a static demonstration for General Atomics that paired the Hughes HM series software-defined modems and our resource management system with SES’s satellites operating in geosynchronous and medium-earth orbits. The demonstration replicated a typical unmanned intelligence, surveillance, and reconnaissance (ISR) mission, transmitting high-definition video and sensor data to and from the unmanned aircraft. Based on the mission’s pre-set policies, our management system automatically switched between the satellite signals to stay connected – even when a signal experienced interference and jamming scenarios. The quasi-instant and seamless beam switch took just seconds to complete, much faster than you normally see today when it’s done manually. The rapid beam switching is important for the U.S. military’s Automated Primary, Alternate, Contingency, and Emergency (APACE) communications planning. In addition, the Hughes modems and management system delivered three times the throughput of the currently deployed SATCOM service using a terminal less than half the size that still meets size, weight, and power requirements. GSR: What was so different and revolutionary about this particular test? What were SES and Hughes looking to accomplish that was new and exciting? Rick Lober: There were several things about the demonstration that broke new ground. I mentioned that the autonomous switching between satellite signals saved critical time during the RPA mission and that the switching supports APACE communications planning for RPAs, a feature that does not exist today. This communications capability was provided as a managed service which is new for RPAs. Using end-to-end managed service enables the RPA operator to switch signals on demand as the bandwidth is needed, without having to acquire it in advance. On the technical side, the switching showed the agility of using the HM 400 modem and the Hughes resource management system, which both use software-defined technology to make the SATCOM operation smarter. We were able to get the higher throughput because the Hughes HM modem leverages a proprietary Scramble Code Multiple Access (SCMA) waveform that also enables greater security for the link so adversaries cannot detect the transmission. GSR: Why is the ability to seamlessly switch from one satellite to another so important or desirable for the military? What could this enable them to do on the battlefield and in theater that they can’t already? How does it enable them to respond to modern threats in the space domain? Rick Lober: I think the U.S. military’s experience flying RPAs in multiple theaters over the past decade has demonstrated the vital importance of maintaining a constant connection between an unmanned aircraft and its operator on the ground. “For the DoD, adding more satellite resources at LEO and MEO means less latency, more redundancy in the communications network, and less chance for an adversary to disrupt the satellite that is carrying the communications.” – Rick Lober Jamming, signal interference, and other factors can cause a break in the satellite signal and perhaps the loss of critical ISR data needed by commanders making decisions during an operation. If the communications link is disrupted, the ISR data about the threat cannot be sent to the ground as quickly as needed. Only by being able to switch seamlessly from satellite to satellite can the user be assured of uninterrupted communications. GSR: Why is it important that the demonstration allowed the user to switch between MEO and GEO satellites? Why would the military ever want or need to do this in theater? Rick Lober: Being able to switch between satellites in different orbit planes provides greater network resiliency and gives commanders more options to enhance their APACE communications. Having a diversity of satellites allows for optimizing the best solution set while making the network more robust. A key advantage of the satellites closer to earth is that they have lower signal latency. GEO satellites are further from earth than satellites at MEO and Lower-Earth Orbit (LEO), meaning the signal will take significantly longer to transmit each way. For the DoD, adding more satellite resources at LEO and MEO means less latency, more redundancy in the communications network, and less chance for an adversary to disrupt the satellite that is carrying the communications. GSR: As satellite services like O3b mPOWER come online, what new capabilities will be enabled for the government and military? How does the impending launch of services like O3b mPOWER make this demonstration even more important and timely? Rick Lober: The new mPOWER satellites that SES is building for its O3b MEO constellation will be another step in providing the DoD user with more resilient communications. These are much more powerful than the existing O3b spacecraft and will have as many as 5,000 spot beams per satellite. They will support automatic switching to satellites in other orbits and much higher data throughput than MEO offers currently. For the DoD, they could become a vital part of APACE communications planning to support new missions in today’s multi-domain battlespace as well as the Joint All-Domain Command and Control (JADC2) concept to connect sensors from all the U.S. military services into a single network. GSR: How could you envision the Hughes HM series and O3b mPOWER working together to enable the military in theater moving forward? What advanced capabilities and services could they enable? Why is it important that technologies like these are available to the military of today and tomorrow? Rick Lober: One of the key features of our HM modem technology is that it uses a commercially based, open-standards architecture, adaptable to almost any network. Another is that it is frequency-band agnostic and can work with just about any satellite, enabling affordable, resilient solutions to meet a wide variety of mobility and portability requirements for government users. “Being able to switch between satellites in different orbit planes provides greater network resiliency and gives commanders more options to enhance their APACE communications. Having a diversity of satellites allows for optimizing the best solution set while making the network more robust.” – Rick Lober By using software-definable modem (SDM) technology and the Hughes enhanced SCMA waveform, the HM System allows government users to adapt the solution to their specific needs. Since the first gateway was installed in September 2015, the HM System has grown to where it can now provide global satellite-on-the-move for airborne, maritime, and land-mobile platforms and on-the-pause capabilities for users in the field. Combining the open-systems, HM-series airborne modems with the MEO, mPOWER, and GEO satellites, government users can maintain communications in more complex environments and conduct missions in contested and congested environments with uninterrupted connectivity – all of which we like to call, ‘secure connectivity, anytime, anywhere, any comms.’ https://sessd.com/gsr/defense-intelligence/recent-testing-by-hughes-and-ses-shows-switching-signals-between-geo-meo-and-leo-satellites-no-longer-science-fiction/

milstar: Under 5 percent have achieved their goals for satellite count, and only 12 percent have added to their existing constellations in the past year. reached anounced ambitions 4.1%

milstar: To summarize, MEO satellites with a planned 8-year operational life must be designed such that their electronic parts, at the silicon level, have at least 400 mils (10mm) of Al between them and the natural environment

milstar: Платформа «Экспресс-4000» пред-назначена для создания высокомощ-ных спутников массой до 3200 кг. А для «Протона М» создали тяжелую платформу «Экспресс-2000» (позже - ее экспортную модификацию "Экспресс-4000"). 26 декабря 2023 года, 09:55 https://prokosmos.ru/2023/12/26/10-let-pervomu-rossiiskomu-sputniku-svyazi-na-tyazheloi-platforme Для работы крайне энергоемкого спутника потребовалось 17 750 Вт мощности. Чтобы ее удовлетворить, пришлось прибегнуть к уникальным техническим решениям, в результате которых масса спутника составила около 3 358 кг, что на 108 кг превысило возможности средств выведения. На «Экспрессе АМ5» установлено 84 транспондера, работающих в четырёх диапазонах частот.

milstar: Луч-5Х» был выведен на орбиту для тестирования «передовых технологий ретрансляции и связи». https://vk.com/@spaceactivityinfographics-olimp-i-enisei-2-rossiiskie-sputniki-skrytogo-podslushivaniy «Луч» находился вблизи более чем двух десятков коммерческих спутников связи на периоды от недель до месяцев. Это очень необычное поведение для спутника GEO. Профиль полета миссии «Луча» очень похож на профиль полета двух засекреченных американских спутников PAN и CLIO, запущенных в 2009 и 2014 годах. ва сообщения прессы в 2014 и 2017 годах (в которых спутник не упоминается по имени) позволяют идентифицировать эти двигатели как KM-60, новый тип двигателей с эффектом Холла, созданных для спутника Исследовательским центром Келдыша в Москве [7]. КМ-60 представляет собой 930-ваттный двигатель с тягой в 42 миллиньютона и средним удельным импульсом (за весь срок службы) в 1860 секунд. Говорят, что уникальной особенностью является напряжение разряда в 500 вольт, что делает его на 25% более экономичным по сравнению с аналогичными двигателями. Он рассчитан на работу более 4000 часов и может включаться до 8 250 раз. 3,1-килограммовый двигатель интегрирован с блоком обработки энергии, блоком регулирования расхода, блоком подачи и баком (МВСК50), содержащим 71 килограмм ксенона. Разработка двигателя длилась 9,5 лет, в общей сложности он проработал 4120 часов при 8357 включениях. Точно неизвестно, сколько двигателей и ксеноновых баков находится на борту «Олимпа». Платформа «Экспресс-1000H», оснащенная двигателями СПД-100В, может перевозить максимум четыре ксеноновых бака МВСК50, что соответствует общей массе ксенона около 300 килограммов. нагрузка для комбинации «Протон-М» / «Бриз-М», которая способна вывести на GEO до 3,5 тонн. Еще одной новинкой, представленной компанией «Луч/Олимп», стал литий-ионный аккумулятор нового типа (ЛИГП-50), разработанный ПАО «Сатурн» в Краснодаре [14]. Также впервые была запущена пара волоконно- оптических гироскопов для инерциальной навигационной системы спутника. Названные «ВОБИС-1» и «ВОБИС-2», они были разработаны «НПК Оптолинк» в Зеленограде под Москвой, который является центром российской микроэлектронной промышленности (иногда его называют «Кремниевой долиной России») [15] Другой полезной нагрузкой, рассматривавшейся для «Олимпа», была 2,2-метровая антенна Ku-диапазона, изготовленная из композитных материалов из углеродного волокна и алюминиевых сот и весившая не более 14 килограммов.. Бывший генеральный директор «ИСС имени Решетнева» Николай Тестоедов написал в отчете за 2016 год, что спутник типа «Луч», запущенный в 2014 году, позволил провести летные испытания «крупногабаритной 12-метровой разворачиваемой антенны для персональной связи».

milstar: The Space Shuttle is capable of a plane change in orbit of only about 3º, a maneuver which would exhaust its entire fuel capacity. http://www.s3l.be/usr/files/di/fi/2/Lecture07B_Maneuvers_2018-2019_201811201311.pdf RAAN Change Complicated A change in the node affects the argument of perigee Non-spherical Earth Perturbation - RAAN calculator https://www.vcalc.com/wiki/MichaelBartmess/Non-spherical+Earth+Perturbation+-+RAAN

milstar: Using the previous example, a 30 deg nodal rotation in a 80 deg inclination orbit (without changing inclination) costs 3881 m/s!!!  Plane changes in low-Earth orbit are expensive https://smd-cms.nasa.gov/wp-content/uploads/2023/05/GDC_OrbitPrimer.pdf Plane changes are proportional to the orbital velocity Δ𝑉 = 2𝑉𝑖sin(Δ𝛼 2 )  For a satellite flying in a 500 km orbit (Vcirc = 7.613 km/s) the cost to change inclination by 1 deg is 133 m/s

milstar: For indoor communication, the construction materials that make up the obstructions are the largest attenuators. The following is a list of common construction materials and their approximate attenuation at 900 MHz (Thicknesses of materials are given in parenthesis). https://ftp1.digi.com/support/images/XST-AN005a-IndoorPathLoss.pdf Concrete 12” (305mm) 35dB

milstar: https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V30-N02/30-02-Oetting.pdf MUOS satellite D. Oetting is the Project Manager and lead systems engineer for the MUOS project.

milstar: https://ntrs.nasa.gov/api/citations/20150000333/downloads/20150000333.pdf Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors Michael Cooley Northrop Grumman Electronic Systems

milstar: The Wideband Global System (WGS) is currently operational in the Pacific Ocean using WGS1 (175E). GBS traffic is supported in that theater today using the Digital Video Broadcast by Satellite (DVB-S) and operates using terminals originally designed for operation using the UHF Follow-On satellite (UFO8) WGS has eight spot beams and two area beams. Beam EIRPs are taken from measured values on WGS1. https://www.mitre.org/sites/default/files/pdf/09_3283.pdf



полная версия страницы