Форум » Дискуссии » GaAS MMIC for military/space application (продолжение) » Ответить

GaAS MMIC for military/space application (продолжение)

milstar: http://parts.jpl.nasa.gov/mmic/mmic_complete.pdf JPL Publication 96-25 GaAs MMIC Reliability Assurance Guideline forSpace Applications Sammy Kayali Jet Propulsion Laboratory George Ponchak NASA Lewis Research Center Roland Shaw Shason Microwave Corporation Editors December 15, 1996 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Ответов - 93, стр: 1 2 3 4 5 All

milstar: These developments have reached the point where it is now possible to build a low-cost 35 GHz phased array for a missile seeker costing $30/element (total cost of array including all electronics divided by the number of elements). This is made possible because integration allows the whole T/R module to be put on a single chip. For some applications, it will soon be possible to put multiple receivers or transmitters on a single chip. http://www.mwjournal.com/Journal/article.asp?HH_ID=AR_5352

milstar: Wozmozno ysilit' potenzial GaAS/GaN industrii Rossii Kroem AFAR dlja woennix celej ,est' rjad grazdanskix primenij Количество сотовых абонентов в РФ выросло за февраль на 2 миллиона 20:19 23/03/2010 МОСКВА, 23 мар - РИА Новости. Абонентская база операторов сотовой связи РФ по итогам февраля 2010 года составила 210,05 миллиона пользователей против 208,33 миллиона по состоянию на 31 января 2010 года. Такие данные приводятся в отчете аналитической компании AC&M Consulting. Уровень проникновения сотовой связи вырос до 144,7% с 143,5% по итогам января. В Москве количество абонентов достигло 32,69 миллиона, проникновение в столице увеличилось до 192,5% (в январе - 190,4%). Лидером по доле рынка на конец отчетного периода стал оператор МТС (30,7%), за которым следуют "Вымпелком" (бренд "Билайн, 22,9%) и "Мегафон" (22,8%). На столичном рынке наибольшую долю занимает также МТС (41,3%); у "Вымпелкома" и "Мегафона" 34,3% и 22,7% соответственно. Количество российских абонентов оператора МТС выросло до 69,2 миллиона с 68,9 миллиона по итогам января. У "Вымпелкома" количество российских абонентов составило 51,5 миллиона, база "Мегафона" выросла до 51,2 миллиона подписчиков с 50,6 миллиона в январе 2010 года. Четвертое место по количеству абонентов занимает оператор Tele2 (не представлен в Москве, 14,95 миллиона подписчиков), за ним следует "Уралсвязьинформ" с 5,77 миллиона абонентов.

milstar: Phazotron contracted NPF Mikran at Tomsk, a semiconductor manufacturer, with support from the Tomsk Electronics University, to develop the Gallium Arsenide MMIC (Monolithic Microwave Integrated Circuits) technology for the radar's critical TR Modules. http://www.ausairpower.net/APA-Zhuk-AE-Analysis.html


milstar: 3. СВЧ электроника В области создания электронной компонентной базы СВЧ и изделий на их основе НПФ «Микран» имеет многолетний опыт разработки и производства чрезвычайно широкой номенклатуры одно- и многофункциональных модулей СВЧ в монолитном и гибридно-монолитном исполнении, для аппаратуры связи, радиолокации и приборостроения. В частности, для РЛС истребителя МИГ-35 на предприятии создан и проходит успешно летные испытания в составе АФАР приемо-передающий модуль. Создана новая пилотная линия на основе высокотехнологичного импортного оборудования, предназначенная для освоения технологии МИС на базе p-HEMT транзисторов с проектной нормой 0.35–0.5 мкм. Производительность линии в конце 2009 года составила не менее 150 пластин диаметром 76,2 мм в месяц. Ведётся отработка технологии p-HEMT транзисторов и МИС на их основе, готовится технологическая документация. http://www.micran.ru/about/activity/ Ochewidno neobxodimo dobawit' im sredstw/eto ne tak dorogo/ dlja texnologij srawnimix s www.triquint.com

milstar: The power rating and PAE (Power Added Efficiency) of the driver transistor was considered another issue, with initial estimation at 6 to 8 Watts CW (12 to 16 Watts peak at 50% duty cycle). The small size of the aircraft and its limited power and cooling capacity were seen to be serious constraints. The drive transistors are operated in A-class to provide best possible linearity, with a performance penalty in a design with an overall PAE of 22% to 25%. C-class operation was rejected due to its adverse impact on signal purity. http://www.ausairpower.net/APA-Zhuk-AE-Analysis.html

milstar: Phazotron have stated, not surprisingly, that the biggest difficulties were encountered in engineering the TR modules. The approach taken after evaluating dozens of alternatives was to integrate four TR channels into a single "quad" module, as this was found to be the most practical tradeoff. An interesting observation is that this is a scheme identical to that used for first generation AESAs by US designers in the late 1980s, followed by the TR "stick module" scheme used in early US production AESAs. Thermal management proved to be the single most difficult problem, and Phazotron claim to have finally produced a design with very high heat transfer efficiency.

milstar: Phazotron appear to be exploring digital beamforming techniques in what Chief Designer Dolgachev describes as a two stage processing scheme, with initial beamforming performed in the AESA, and additional beamforming in the digital receiver, downstream of the ADC stage. Adaptive nulling of mainlobe jammers is also raised as a benefit of the AESA design. Dolgachev also observed that a key factor in the design process was maintaining a focus on key performance parameters, and exploiting computational simulations extensively throughout the design process. The starting point for the AESA design was the development of a complete computational simulation for the design, the aim of which was to explore various design tradeoffs to find those which worked best. Single channel TR modules were rejected in favour a more thermally efficient 4 channel quad module design. The proprietary diamond lattice placement of radiating elements used in earlier PESAs was rejected as it presented difficulties in splitting the array cleanly into the multiple phase centres required for monopulse angle tracking, nevertheless the stagger in the elements still provides a robust diamond lattice pattern. The resulting module configuration is designed to carry RF signals along the shortest geometrical path between the array face and the feed, with coolant flow transverse (normal) to the antenna boresight. The result of these tradeoff studies resulted in the final placement of the radiating elements in vertical columns, each comprising an integer multiple of four elements to accommodate the TR module structure. Performance achieved for the final element placement was a first sidelobe at -30 dB, an average of higher order sidelobes at -50 dB, mainlobe width degradation of 4 dB at maximum beamsteering angle, and no grating lobes within the sought beamsteering angular range. Computational simulations were performed to determine the appropriate quantisation increments for antenna TR channel phase and gain control. Five bits were found to be adequate for amplitude, and six bits for phase control. Each TR channel in the array is individually addressed on the control bus. The backplane feed uses an undisclosed radial waveguide design, rather than the segmented linear branched feeds seen in first generation Western AESAs and ESAs. A network of coaxial waveguide switches between the feed network and TR modules is used to manage phase centres and perform monopulse summing and differencing for angle track modes. Power supply distribution to the TR modules presented similar problems with module 'pulling' during current drain transients, and was accommodated by the pragmatic expedient of attaching a large charge store capacitor on the main power bus near each of the TR modules. Cooling was arranged by mounting each TR module on an integral frame cold plate, the latter being actively cooled by liquid flow. Heat is transferred from each MMIC or transistor into the base of the module, and then into the cold plate for removal. Phazotron have not disclosed the thickness of the cold plates or TR modules, but clearly the horizontal element pitch is the hard constraint here. Each TR module includes an embedded thermal sensor which forces a module shutdown if overheating occurs, and restart cannot occur until the module cools down. All modules are thermally compensated in amplitude and phase to ensure that the performance characteristics remain aligned regardless of temperature and operating frequency. Dolgachev describes the current TR module parameters as such: Average power of 5 Watts Transmit path gain of 34 dB Receive path gain of 30 dB Receiver noise figure of 2.5 dB [2] Phase shifter control increments of 5.625° Amplitude control increments of 0.7 dB Dynamic range for amplitude control of 24 dB Overall PAE of 25%

milstar: http://innovation.triquint.com/challenge/ Celebrate the past. Take off to the future. For 25 years, TriQuint has been a leader in high-performance RF solutions for sophisticated mobile devices, defense & aerospace applications, and network infrastructure. Join us as we celebrate our anniversary and prepare to shoot even higher over the next 25 years and beyond. Through the TriQuint Take-Off Challenge, you can enter for a chance to win one of three Amazon Kindles as well as one drawing for a $3,500 (USD) grand prize. Then watch this Web site for results and information on the upcoming Challenge stages. At the leading edge of high-performance RF design. Today, TriQuint delivers innovative solutions using GaAs, GaN, SAW and BAW technologies to organizations around the world. Engineers and scientists rely on TriQuint's innovation to improve the performance and lower the overall cost of their applications. TriQuint... Connecting The Digital World To The Global Network®.

milstar: 1 wopros otwetil awtor ,ostalnie sami http://innovation.triquint.com/challenge-questions/ What Austrian-born electrical engineer, who patented a form of spread-spectrum still used in wireless communications, has a star on the Hollywood Walk of Fame? Lee De Forest Hedy Lamarr * Fritz Lang Max Steiner http://hedylamarr.org/ http://hedylamarr.org/vision.html

milstar: http://www.triquint.com/prodserv/markets/military/radar.cfm

milstar: In 2009 there were two principal candidate AESAs for installation in new build Flankers, or retrofit into existing service Flankers. These radars are NIIR Phazotron's intended Zhuk-AS/ASE, scaled up from the MiG-35 Zhuk AE AESA, and a derivative of Tikhomirov NIIP's new PAK-FA AESA, displayed publicly at MAKS 2009. Both radar designs are based on the quad channel TR module technology first disclosed during the public release of the Zhuk AE. These X-band modules are now being mass produced on an automated line by NPP Istok, who are also planning S-band module production. Mostly Russian produced GaAs components are employed. Cited capacity is sufficient for 50 AESA radars annually. #################################### 50*1600 = 80 000 GaAS MMIC http://www.ausairpower.net/APA-Flanker-Radars.html

milstar: К использованию широкозонных гетероструктур в современной военной технике я отношусь достаточно пессимистично. Мое твердое убеждение – сегодня аппаратуру для АФАР, для систем вооружения пятого поколения нужно создавать на GaAs. В течение ближайших 10 лет GaN-монолитные схемы вряд ли будут использоваться в системах вооружений. Кончено, возможны и прорывы, прогнозировать что-либо в столь новых направлениях сложно. Однако без создания СВЧ МИС на GaAs, соответствующих мировому уровню 2005 года, наша военная техника не преодолеет барьер требований к вооружениям пятого поколения. Пока мы не освоим рНЕМТ-технологию GaAs, говорить о широкозонных материалах преждевременно http://www.electronics.ru/issue/2005/4/1 Интервью с генеральным конструктором ФГУП НПП "Исток" С.Ребровым 2005 god

milstar: Но мы всецело зависим от поставок GaAs-пластин. Их единственный промышленный производитель в стране – ЗАО "Элма-Малахит", несмотря на то, что там даже нет современной ростовой машины. "Исток" потребляет до 90% GaAs-пластин у "Элмы-Малахита", причем по нашему заказу изготавливаются пластины с различными параметрами гетеропереходов. Но объемы заказов настолько малы, что их производство нерентабельно и владельцы предприятия могут его ликвидировать. Если мы лишимся этого единственного в стране производителя GaAs-пластин, произойдет беда. Есть еще участки изготовления GaAs в институтах РАН, но они лабораторные, делать на них ставку нельзя

milstar: http://www.elma-m.com/ru/about Общая численность сотрудников компании – 150 человек. Технический персонал компании, в составе которого 15 докторов и кандидатов технических наук, обладает глубокими теоретическими знаниями и практическим опытом производства материалов группы AIII-BV, постоянно работает над совершенствованием технологий роста, обработки и эпитаксии, чтобы удовлетворить самые взыскательные требования, предъявляемые мировым рынком.

milstar: http://download.iop.org/cs/cs_11_02.pdf page 19 In his talk, Moon said that PAs based on GaAs PHEMTs could produce less than 6W of output power in the Ka-band with a power- added efficiency (PAE) of about 23%. na 35 ghz h/2 4.3 mm .pri 6 watt s odnoj MIC nuzno otwetsi 24 watt tepla pri apperture diamtrom 900 mm (pl 0.6 kw .metra ) 32000 MIC AFAR NIIP s 1524 MIC na 10 ghz stoit 7mln $ Malorealistichno na 35 ghz ##################

milstar: Raytheon Demonstrates Gallium Nitride Advantages In Radar Components - by Staff Writers Tewksbury MA (SPX) Apr 17, 2008 Raytheon is developing transmit-receive modules based on the advanced semiconductor gallium nitride (GaN) for use in future radar upgrades. "This transmit-receive module demonstration and parallel reliability testing show that GaN will soon be ready to take over where increased power and advanced capabilities are needed," said Mark Russell, vice president of Engineering at Raytheon Integrated Defense Systems (IDS). The development is part of an on-going 42-month, $11.5 million Next Generation Transmit Receive Integrated Microwave Module (NGT) contract funded by the Missile Defense Agency's Advanced Technology Directorate. Raytheon is demonstrating that transmit-receive modules using GaN-powered monolithic microwave integrated circuit amplifiers have a significant performance advantage in that they provide significantly higher radio frequency power with greater efficiency than current modules. The NGT program leverages GaN technology being developed under the Defense Advanced Research Projects Agency's Wide Bandgap Semiconductor program as well as company-funded efforts. Russell said that GaN technology significantly extends the warfighter's reach into the battlespace by increasing radar ranges, sensitivity and search capabilities. Alternatively, the technology enables reduction in the size of the antenna, which improves transportability and reduces acquisition and lifecycle costs without sacrificing performance. "The NGT program is important because it is the first significant government-funded contract to address the use of the more capable GaN semiconductors in a relevant environment," said Steve Bernstein, IDS' program manager on NGT. "This recent demonstration shows that GaN technology performs better in transmit-receive modules representative of those used in modern radars." http://www.spacewar.com/reports/Raytheon_Demonstrates_Gallium_Nitride_Advantages_In_Radar_Components_999.html

milstar: http://www.highfrequencyelectronics.com/Archives/Dec06/HFE1206_Gaynor.pdf indium phosphide System-in-Package: RF Design and Applications. He can be reached at mgaynor3@comcast.net

milstar: http://www.metalprices.com/FreeSite/metals/in/in.asp U.S.Geological Survey (USGS): Indium

milstar: ndium phosphide taken to 152 GHz for military use Peter Clarke 8/10/2004 8:00 AM EDT LONDON — A team working around Rockwell Scientific Company LLC has demonstrated static frequency divider circuit in a submicron indium phosphide double heterojunction bipolar manufacturing process technology that can operate at a frequency of 152 GHz, Rockwell said Tuesday (August 10). The achievement is a milestone in the Defense Advanced Research Projects Agency (Darpa) funded program called Technology for Frequency Agile Digitally Synthesized Transmitters (Tfast) which included Rockwell, Global Communication Semiconductors, University of California at Santa Barbara, IQE plc and the Mayo Clinic, among its collaborators. Tfast has been set up to advance InP DHBT technology for Department of Defense mixed-signal circuit applications such as very high speed analog-to-digital and digital-to-analog converters and direct digital synthesizer circuits, ----------------------------------------------------------------------------------------- Rockwell said. InP DHBT transistors should provide high electrical breakdown, low phase noise, and wide bandwidth, and are intended for use in in-flight reprogrammable satellite communication links, in-combat programmable electronic warfare jammers, and millimeter-wave transmitters. "The near-term applications of Tfast are going to be focused on the high-performance needs of military systems, but the potential for future commercial uses are great, especially in wireless and telecommunication applications," said Bobby Brar, Rockwell Scientific's Tfast program manager, in a statement. Rockwell Scientific's team has been selected to continue the development of the InP DHBT technology under Phase II of the Tfast program.

milstar: Raytheon Awarded $7 Million Phase 2 Contract From the Office of Naval Research TEWKSBURY, Mass., Aug. 27, 2009 /PRNewswire/ -- Raytheon Company (NYSE: RTN) was awarded a $7 million follow-on contract from the Office of Naval Research for work on the Compound Semiconductor Materials on Silicon (COSMOS) program. Funded by the Defense Advanced Research Projects Agency, this phase two contract will focus on improving the yield and integration density of compound semiconductor and silicon complementary metal oxide semiconductor (CMOS) transistors fabricated on the same silicon wafer. "The COSMOS program focuses on integrating high-performance compound semiconductors, such as Indium phosphide or Gallium arsenide, ---------------------------------------------------------------------------------------------------------------------------------------------------------------- with low-cost silicon transistors to achieve superior cost benefits and performance than what is available today," said Michael Del Checcolo, vice president of Engineering for Raytheon Integrated Defense Systems (IDS). "These technological advances allow us to provide more complex and highly sophisticated solutions for our warfighters." During phase one, the Raytheon-led team demonstrated that high performance compound semiconductor devices (InP HBTs) can be directly grown and fabricated on silicon substrates and monolithically integrated with Silicon CMOS transistors on the same substrate. The team will use these findings in phase two to design and fabricate high speed, low power consumption digital-to- analog converters whose performance cannot be realized with today's existing semiconductor technology. Using its OpenAIR™ business model for assembling talent and capabilities, Raytheon IDS is partnering with Raytheon Systems Limited, Glenrothes, Scotland; Soitec, Bernin, France; Teledyne Scientific Imaging Company, Thousand Oaks, Calif.; Massachusetts Institute of Technology, Cambridge, Mass.; Paradigm Research LLC, Windham, N.H.; IQE, Bethlehem, Penn.; and Silicon Valley Technology Center, San Jose, Calif. Integrated Defense Systems is Raytheon's leader in Global Capabilities Integration providing affordable, integrated solutions to a broad international and domestic customer base, including the U.S. Missile Defense Agency, the U.S. Armed Forces and the Department of Homeland Security. Raytheon Company, with 2008 sales of $23.2 billion, is a technology and innovation leader specializing in defense, homeland security and other government markets throughout the world. With a history of innovation spanning 87 years, Raytheon provides state-of-the-art electronics, mission systems integration and other capabilities in the areas of sensing; effects; and command, control, communications and intelligence systems, as well as a broad range of mission support services. With headquarters in Waltham, Mass., Raytheon employs 73,000 people worldwide. Contact: Michele Lemos 978.858.5850



полная версия страницы