Форум » Дискуссии » lampi ... » Ответить

lampi ...

milstar: 8923H TWT �� Frequency: 30–31 / 33–36 / 43.5–45.5 GHz �� Psat (min.): 300 W / 380 W / 175 W �� DC in (max): 780 W / TBD / 550 W �� Dissipation (max): 480 W / TBD / 380 W �� Size: 2.8” x 2.3” x 12.0” �� Weight: < 4 lbs ############### Note: Different voltages required for Ka and Q band operation http://www.l-3com.com/eti/downloads/military/8923H.pdf Military and Telecommunications Products High Power MMW Helix TWT Product Listing http://www.l-3com.com/eti/product_lines_military_twt.htm

Ответов - 65, стр: 1 2 3 4 All

milstar: U.S. Official Calls Russian Radar Good, but Not Exact Enough for Tracking Plan Published: November 5, 2007http://www.nytimes.com/2007/11/05/world/europe/05missile.html?ei=5088&en=9cc28be405545181&ex=1351918800&partner=rssnyt&emc=rss&pagewanted=all WASHINGTON, Nov. 3 — To block American proposals for building missile defenses in Europe, President Vladimir V. Putin of Russia surprised the White House in June with a counteroffer to let the United States use one of the Kremlin’s most secret early-warning radars. That Russian radar, in Azerbaijan, a neighbor of Iran, has since been a central focus of negotiations between Washington and Moscow. But much about it had remained mysterious. Now, the first American military officer to visit the Russian radar said Friday that he came away with three significant impressions. The radar is huge, almost twice the size of a similar American system. Despite its reliance on outdated vacuum-tube technology, 1. PAE GaAS/GAN na 10 ghz 50% ,wische etoj chastoti rezko padaet . ############################################## W AFAR MMIC blocki raspolozenni ne dalsche polovini dlinni wolni na 10 ghz = 3 sm/2 = 1.5 sm Esli wzjat' 100 000 blochkow po 100 watt (SBX thinned array ,ta mmesche) to nado otwesti 10 megawatt teplowoj moschnosti Na 35 ghz tak kak PAE GaAS/GaN 25-30 % sootw w 3 raza bolsche ############################################## Eto wesma ne prostaja zadacha ###################### 2. Na 10 Ghz mozno realizowat' polosu 1000 mhz ( 25-30 sm razreschenie ) na 35 GHz 2000 mhz (10-12 sm razreschenie ) 3. Lutschie amerikanskie radari na 35/94 Ghz lampovie MMW, Warlok 4. Soetskaja texnologija na 35 ghz 1 megawatt realizowanna w rls RUZA 5. Mnenie predstwitelja Pentagona grubo tendeziozno ,mozet on predstawljet lobby poluprowodnikowj industrii which is designed for very precise tracking and focusing on targets. ...focusing -eto odno iz ljubimix slow ,kogda adressujut massi Despite the system’s older technology, “I was impressed by what I saw,” General O’Reilly said. “It would be a false impression to dismiss the capabilities they have. They just chose another way of achieving it. It is an excellent radar for the case of early warning.” USA MMW 35/94 -lampi ################# . The American radar is intended to track specific targets and then precisely guide an interceptor to destroy a warhead, something the Russian radar cannot do, since it was designed to scan larger areas but with less detail, he said. Psokolku razresch.sposbnost' zawisit ot polosi i sootw nesuschej -lutschee reschenie lampi Russian military technology is known for designs that are super-size, an outgrowth of Soviet strategy in which a centrally planned economy could push huge sums of rubles to the military to counter American technological superiority. Amerikanskie sistemi F-22 - mnogie desjatki mlrd $ na razrabotku sotimost' programmi 65 mlrd $ ( zakupleno mensche 200 samoletow) Ne deschewle ########### While American military technology adopted solid-state semiconductor electronics decades ago, Eto ne znachit chto poluprow. texnologii lutsche wo wsex primenenijax . I lampi i GaAs/GaN imejut swoi + i - Ot zadach ... the Russian radar still operates using vacuum tubes, General O’Reilly said. He noted that Russia had improved tube technology far beyond where the United States had taken it before moving to electrical semiconductors Toze i w USA lampowie radari 35/94 MMW,Warlok

milstar: dlja sprawki RUZA rls npo radiofizika 35 ghz 1 megawatt ,40 kw .metrow apperturi Na bolee wisokix chastotax mirowoj rekord werojatno nize RF measurements at pulse duration of a few milliseconds yielded an RF output power of 1.15 MW at a beam current of 40 A and a beam voltage of 84 W. Depressed collector operation has been possible up to decelerating voltages of 33 kV without any reduction of the output power. Long pulse operation (10 s at 1 MW) was possible without any signs of a limitation caused by the tube. For this output power the efficiency of the tube could be increased from about 30% without to about 50% with depression voltage. The best performance reached so far has produced an energy per pulse as high as 90 MJ (power 0.64 MW, pulse length 140 s) which is the highest value achieved in gyrotrons operating at this frequency and power level. The pulse-length limitations so far are mainly due to the external system. http://www.mpg.de/english/researchResults/researchPublications/researchReports/HTP/200306_101.shtml foto na linke W woennix primenenijax poka realizowanno 35 i 94 ghz ( MMW ,Warlok radar) Passivnie elementi dlja PFAR toze do 94 ghz (ranee priwodil)

milstar: http://radar-www.nrl.navy.mil/navbar/Research%20Programs/Warloc.html Nize top woennij resultat dlja 94 ghz ,moschnsot' lampi wische chem w MMW na 94 ghz,no appertura w 7 raz mensche diametrom The NRL WARLOC (W-band Advanced Radar for Low Observable Control) radar is being developed as a transportable, land- or sea-based system, using a high-power Gyro-Klystron, quasi-optical transmission line and duplexer components, a Cassegrain antenna, and associated receiver and signal processor subsystems. The complete system will be housed in two trailers, 40 by 8 feet and 20 by 8 feet respectively, and a system block diagram is shown in theFigure. Radar Parameter Value Unit Frequency 93-95 GHz Bandwidth 600 MHz Peak Power 80 kW Average Power 10 kW Antenna Diameter 6 ft Antenna Gain 63 dB Polarization HOR/VERT Az and El Monopulse Yes Transmit Loss 1.5 dB Receive Loss 0.5 dB Noise Figure 5-6 dB


milstar: 1.Conventional, electronically scanned, phased arrays are not yet practical for millimeter-wave applications. The center-to-center element spacing, 0.060 inches at W-band (94 GHz) and 0.100 inches at V-band (60 GHz) and 0.200 inches at Ka-band (35 GHz), is not conducive to the packaging of ############################################################################################## such arrays. ######### http://www.globalsecurity.org/military/systems/aircraft/systems/an-apg-aesa.htm 2. Passive ferrite phase shifters above Ka-band (35 GHz) have only recently become available and are generally lossy, current controlled devices and active transceiver modules are in their infancy of development. W-band transmit/receive module electronically scanned array antennas are not feasible with conventional technology. ne wo wsem werno ,smotri nize ############# 4.2 Ferrite Phase Shifters EMS Technologies has over 30 years experience in the design of passive feed networks and ferrite components. Our custom designs give the best combination of size, loss, and power handling. Table 1 shows typical RF performance for phase shifters in frequency ranges of interest for communications and radar applications. Switching times are typically in the range of 2-5 мs and the phase shifters can be switched at rates in the tens of thousands of switching events per second. As discussed below, phase shifter setting resolution and accuracy is the main determinant of beam pointing accuracy. EMS phase shifters and drivers can achieve phase resolution up to 10 bits (0.35°) and phase accuracy up to 3° RMS depending on driver selection. Table 1: Typical performance of EMS ferrite phase shifters in various frequency bands Frequency (GHz) Insertion Loss (dB) Return Loss (dB) Power Handling (W) http://www.emsdss.com/pdf/PassivePhasedArraysApNote.pdf Helix TWTs are used in Electronic Warfare systems like the ALQ-184 Electronic Attack Pod on the F-16 and the AN/SLQ-32 on U.S. Navy ships. Gyrotrons are even more impressive in their output power at high frequencies. Tests in March of 2005 at the Max Planck Institute for Plasma Physics in Greifswald, Germany of a CPI manufactured gyrotron, the VGT-8141, produced nearly 900 kW of output power, at a frequency of 140 GHz, for 30-minute pulses.

milstar: http://www.cpii.com/docs/datasheets/30/vgt8141.pdf The VGT-8141 gyrotron delivers continuous wave (CW) output power levels up to 900 kW at a frequency of 140 GHz for electron cyclotron heating and current drive in fusion plasmas. wsego 2.29 metra

milstar: The MMW, shown in Figure 5, became operational at Ka-band (35 GHz) in 1983, and Wband (95.48 GHz) in 1985, sharing a paraboloidal antenna with a diameter of forty-five feet. Both systems initially featured wideband waveforms of 1000- MHz spread generated by linear FM, and achieved 0.28-m range resolution. The transmitted pulse width is 50 ¦Мsec at a maximum pulse-repetition rate of 2000 pulses per second. The initial peak power at Ka-band was 60 kW and at W-band was 1.6 kW. ################################# A major thrust in the evolution of the MMW radar has been to demonstrate the feasibility of candidate ################################## real-time discrimination algorithms required for fire control and guidance of hit-to-kill BMD interceptors. #################################### To this end, the radar was designed with a rigid mount and narrow beam to provide precise angle metric accuracy (ЎЬ50 ¦Мradians). http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf A second 35-GHz tube was also added, which doubled the average transmitted power ########################### . These modifications increased the signal pulse detection range on a one-square-meter target to over two thousand kilometers. ####################################### t.e. 13.5 metrow antenna s schir. luscha 0.042 na 35 ghz (ili 0.014 na 95 ghz) ,120 kwt peak power in 35 ghz dalnost' dlja 1 kw .metra epr -2000 km System bandwidth was also increased to 2 GHz, resulting in a range resolution of about 0.10 m. T.e. dowedenie polosi do 8-10% ot nesuschej ( w c band 5.6 ghz s polosoj 500 mgz ,razr -0.5 metra) pozwolit poluchit razreschenie do 2.5 sm w 95 ghz ( chitat' nomer na maschine 1 sm) Pri wipolnennii antenni PFAR wmesto Cassegr .tochnost (shirina lucha ) budet padat' ####################################################### Nel'zja wse celi dostignut# srazu odnim metodom ################################## Kombinazija diapzonow i antenn AFAR/PFAR i cassegr. Wisokoj nadeznosti srawnimoj s afar ,mozno dostich' ispolzowaniem reservnix lamp ( 4 lampi 4 kr. rezerwazija ) GaAS/GaN poka pokazali resultati w SBX Radar (10ghz) .No tam ne polnaja AFAR 68000 MMIC na 400 kw .metrow Dlja srawnenija na 9.2 kw metrow THAAD 25344 GaAS Bistro prekljuchaetsja, no shirokij luch ,wische yrowen' parazitnix luchej

milstar: Экспериментальный вариант наземной РЛС «Руза», работавшей на частоте 34 ГГц, которая соответствует первому окну атмосферной прозрачности, был создан и успешно испытан в конце 80х - начале 90х годов [12*]. Оконечными каскадами усилительных цепочек передатчика РЛС являлись мощные гироклистроны с рабочим типом колебаний TEo2i открытых резонаторов большого поперечного сечения, которые обеспечивали эффективное усиление сигнала при уровнях выходной мощности порядка 500-700 кВт в полосе частот 250-300 МГц [13*, 14*]. Neobxodimo 2000 mgz na 34 ghz - razreschajuschaja sposobsnost' budet 10 sm Pri 10 ghz realizuemo 1000 mgz http://planetadisser.com/see/dis_28535.html

milstar: В период с 1997г. по 2000г. Военно-морской лабораторией США (Naval Research Laboratory) проводилась разработка РЛС коротковолновой части ММДВ, которая впоследствии получила название WARLOC [15*]. РЛС WARLOC работала на частоте 94 ГГц, соответствующей второму окну атмосферной прозрачности. В качестве оконечного каскада усилительной цепочки передатчика станции использовался пятирезонаторный гироклистрон VGB-8194 SN2 с рабочим типом колебаний резонаторов ТЕОц, имеющий выходную импульсную мощность 100 кВт, среднюю мощность 10 кВт, КПД 31%, коэффициент усиления 33 дБ и полосу частот 700 МГц [16* + 20*]. Дальность действия РЛС составляет лишь 40 км (при размерах цели порядка одного метра), что обусловлено сильным затуханием излучения этого диапазона в атмосфере. originalno w rabote http://www.ieee-aess.org/docs/t-aes/sept2008/4431102.pdf 30 nmi(55km) km pri yglax elevazii blizkix k 0 360 nmi pri yglax elevazii 30 grad dlja image

milstar: Power levels of up to 180 kW, 30 dB gain and 10% bandwidth were achieved in a 35 GHz gyro-TWT ##################################### Dlja 35 ghz polosa 3500 mgz ,t.e. razreschajuschaja sposobnost' menee 6 santimetrow ####################################################### using a helically corrugated cylindrical interaction structure [6]. Although these are very impressive advances, they face significant obstacles in extension to operation at higher frequency, such as 95 GHz at high average power. http://www.psfc.mit.edu/research/wab/pdf/ConfocalGyro-TWT%20PRL_90_258302_2003.pdf

milstar: a peak output power of 100 kWcan be generated at 140 GHz with 38 dB saturated gain and 28% efficiency. The theoretically predicted constant drive saturated bandwidth is 4 GHz. This work was supported by the Department of Defense under the MURI Innovative MicrowaveVacuum Electronics Program. The authors thank Kenneth Kreischer of Northrop Grumman Corp. for his suggestions during the design and the operation of the experiments and Ivan Mastovsky and William Mulligan for their help in running the experiments. rjad russkix familij - Temkin ,Mastowskij ... Biwschie "Istok" ?

milstar: W knige Radar 2008 online (nelzja kopirowat#,mozno chitat#)) glawa 10 Russkaja kompanij Istok wipuskaet MBK w S(2-4 ghz) diapazone wesom bez magnita 25 kg 36 luchej ,12 kilowatt srednej moschnsoti ,600 kilowatt pikowoj ,6.5% polosi ot neuschej http://www.scribd.com/doc/17534290/Chapter-10-The-Radar-Transmitter 24 luchewoj mbk(multi beam klystron) dlja x diapazona 24 luchewoj MBK(multi beam klystron) 17 kwt srednej ,200kwt pikowoj ,6% ot nesuschej(500 mgz) wes 16 kg ,effektiwnost' w rajone 65%

milstar: tam ze helix twt ochen' schirokopolsnie (primer w nachale thread) no ogranichenni po moschnsoti do neskolkix kwt

milstar: Power levels of up to 180 kW, 30 dB gain and 10% bandwidth were achieved in a 35 GHz gyro-TWT using a helically corrugated cylindrical interaction structure [6] [6] G.G. Denisov et al., in Proceedings of the 27th International Conference on IRMM Waves (Ref. [2]), p. 197. http://www.psfc.mit.edu/research/wab/pdf/ConfocalGyro-TWT%20PRL_90_258302_2003.pdf The first demonstration of zerodrive stable single-mode amplification in this highly overmoded gyro-TWT is a promising development for building high average-power (  100 kW) amplifiers in ( ( t.e. pikowoj moschnost#ju megawatt na 94 ghz) the W band and beyond. Such devices may be very useful for W-band radar and communication.

milstar: Warlok lampa At low duty factor, the amplifier produced up to 118-kW peak output power at 600-MHz bandwidth At high duty factor 10.1-kW average output power and 420-MHz bandwidth were achieved at 11% RF duty factor with an efficiency of 33.5%. At different magnetic field settings, the device produced 600-MHz instantaneous bandwidth with 5-kW average power and 50-kW peak power. These results represent world-record–setting performance for an amplifier at this frequency. T.e. na 94 ghz poka ogranichenija po chastote . 3500 mgz kak w rabote Denisova na 35 ghz/180 kwt pikowoj poka net ################################################################## Bez extrapoljazii 3500 mgz eto razreschaja sposobnost' 6-7 sm ґDlja togo chtobi chitat' nomera na maschine nuzno 1 sm Chem wische tochnost' ,tem wische schans razlichija boeogolowki ot tjazeloj loznoj celi ########################################################## A low-duty-factor prototype of a W-band gyrotwystron has demonstrated 50-kW peak output power and 925-MHz FWHM bandwidth, and calculations of projected performance with the present electron gun design are for 1.4-GHz bandwidth at 80-kW peak power level [42]. For bandwidths greater than 2 GHz, gyro-TWT amplifiers are under investigation by a number of researchers [43]–[45], and there is ample reason to be optimistic about the future development of high average power versions of gyro-TWT’s in the millimeter-wave band http://www.ireap.umd.edu/Theory/Publications/pub2000-11.pdf

milstar: A variety of radar applications require the development of high-power millimeter-wave amplifiers such as gyroklystrons. Precision tracking of targets is often best accomplished with high-frequency ############################################# radars [7]. The imaging of space objects, such as missiles, asteroids, space debris, and satellites, also requires the use of high-power millimeter-wave radars [8]–[13]. ################################### These radar applications have resulted in continuing interest in gyrotron amplifiers, including their many variants, such as the gyroklystron, gyrotwystron, and gyro-traveling wave tube (TWT). Of the many types of gyro-amplifiers that have been investigated in experimental low-average power devices, the most common type usually considered for radar application is the gyroklystron [14], [15]. http://www.ireap.umd.edu/Theory/Publications/pub2000-11.pdf

milstar: Abstract: A state-of-the-art gyro-TWT amplifier operating in the low loss TE01 mode has been developed with the objective of producing an average power of 140 kW in the W-Band with a predicted efficiency of 28%, 50dB gain, and 5% bandwidth. (4700 mgz -! na 94 ghz - 5 sm razreschajuschaja sposobnost' bez band extrapoljazion) ########################################################### The primary objective is to increase the bandwidth of W-band gyrotron amplifiers to several percent by employing a stable high performance gyro-TWT circuit. The amplifier was developed for the extremely important electromagnetic W-Band for future DoD millimeter-wave applications, in particular for the WARLOC radar. ###################################################################### Our innovative amplifier has further improved upon the characteristics of the recent NRL-industry high average power W-Band TE01 gyro-klystron and gyro- #################################################################################################### twstron amplifiers. ############ The bandwidth has been increased by nearly an order of magnitude. ############################################# The suppression of gyro-BWO oscillation was a critical factor in the design of the TErn gyro-TWT. However, it should be noted that this negative- feedback interaction can be very useful by itself. In particular, a dual mode gyro-BWO has been designed to yield high power in the W-Band over a broad bandwidth, which will provide vital capability for future ECM applications. The two tuning modes of our gyro-BWO are fast tuning by changing the cathode voltage and slow tuning by changing the magnetic field. It will utilize much of the TEO gyroTWT circuit. The tapered device is predicted to generate 10 kW near 94 GHz with over 10% tuning and 20% efficiency. http://www.stormingmedia.us/45/4536/A453614.html http://www.stormingmedia.us/45/4536/A453614.html

milstar: http://www.psfc.mit.edu/research/wab/pdf/confocal_gyrotwt-1.pdf

milstar: Examples of current millimetre wave defence radar systems • EDT-FILA (Brazil) fire-control system 8-40 GHz • Small Fred (Russian Federation and associated states (CIS) ground surveillance 20-40 GHz • SNAR-10 (CIS) surveillance 20-40 GHz • TOR (CIS) surface-to-air missile system 20-40 GHz • Cross Swords (CIS) missile fire control 20-40 GHz • Gukol-4 (CIS) weather/navigation 20-40 GHz • Systema (CIS) airborne millimetric surveillance, search and rescue, landing aid 100 GHz • Romeo II (France) obstacle avoidance 40-100 GHz • EL/M-2221 (Israel) multi-function search, track and guidance/gunnery 27-40 GHz • ASADS (Netherlands) anti-aircraft gun fire-control 35 GHz • FLYCATCHER Mk2 (Netherlands) dual band I/K band air defence • SPEAR (Netherlands) low level air defence fire-control 35 GHz • LIROD (Netherlands) fire control and surveillance system 20-40 GHz • STING (Netherlands) fire control 20-40 GHz • STIR (Netherlands) tracking and illumination 20-40 GHz • Eagle (Sweden) air defence fire-control 20-40 GHz Flycatcher Mk2 http://www.q-par.com/corporate/marketing/millimetric-wave-radars-in-defence-surveillance-presentation.pdf

milstar: Examples of current millimetre wave defence radar systems • Longbow (US) millimetric 94 GHz fire control • Battlefield Combat Identification Systems BCIS (US) all-weather question-and-answer battlefield identification system 38 GHz band • AN/SPN-46(V) (US) ship borne precision approach and landing system 20-40 GHz • AN/APQ-175 (US) airborne multi-mode 20-40 GHz • Surveilling Miniature Attack Cruise Missile SMACM (US) tri-mode seeker 94 GHz • Airborne Data Acquisition System ADAS (UK) F, I and J bands, 35 GHz and 94 GHz • Maritime Clifftop Radar MCR (UK) F, I and J bands, 35 GHz and 94 GHz • Mobile Instrumented Data Acquisition System MIDAS (UK) F, I and J bands, 35 GHz and 94 GHz • Type 282 (UK) tracking and ranging for test sites 20-40 GHz • MARCAL (UK) muzzel velocity 20-40 GHz • Type 911 (UK) surface to air missile tracking 40-100 GHz • W800 (UK) ground based surveillance FM-CW radar 77 GHz • TARSIER (UK) ground based surveillance 94 GHz W800 (UK) ground based surveillance FM-CW radar 77 GHz • TARSIER (UK) ground based surveillance 94 GHz

milstar: Longbow™ system comprised of 94 GHz fire control radar (FCR) and “fire-and-forget” HELLFIRE missile system • Fielded on US Army Apache AH-64 and British Army WAH-64 Attack Helicopter • Moving target detection to >8 km range, stationary targets to >6 km range • Target identification (non-cooperative) to class (such as tracked, wheeled etc ) Longbow™ system courtesy of Lockheed Martin/Northrop Grumman

milstar: TWTs Still Drive High-Power Systems Vacuum tubes may not have the sizzle of their solid-state counterparts, but in radar, satcom, EW, ECM, and other applications, their power/bandwidth characteristics remain unchallenged. Meppalli Shandas | ED Online ID #21520 | July 2009 Vacuum tubes were once the active devices of choice in high-frequency systems. With increasing use of solid-state devices, however, vacuum electron devices (VEDs) play less dominant roles in microwave and millimeter- wave systems, although they still offer the most power per device for most applications. Vacuum tubes such as klystrons, crossed-field amplifiers (CFAs), gyrotrons, magnetrons, inductive output tubes (IOTs) and, in particular, traveling wave tubes (TWTs), continue to retain their solid position in defense applications and even in some commercial and industrial applications as well. The fact remains that at high microwave and millimeter-wave frequencies, monolithic microwave integrated circuits (MMICs) and RF power transistors can’t match the power/bandwidth product that these “mature” devices can deliver. Of course, this “dollars per watt” scenario changes every year, as devices based on GaAs, silicon and, increasingly, gallium nitride (GaN) offer higher power levels at higher frequencies. These improving performance levels help chip away at vacuum tube bastions such as broadcast transmitters, and electronic warfare (EW), electronic countermeasures (ECM), and radar systems. However, they have a long way to go before they will be able to produce megawatts of power at 40 GHz like a klystron or gyrotron, or 250 kW like a coupled-cavity TWT. The challenge of reducing the staggering losses incurred in power combining networks alone would be enough to scare away even the most ardent supporter of solid-state technology. The TWT is arguably the most widely used VED for microwave defense, instrumentation, and satellite communications applications. It provides the extremely high output-power density required by these applications at microwave frequencies, with time-tested reliability. Development continues on the devices as well as the amplifiers and transmitters they enable, and the power supplies whose characteristics are critical to ensure the performance and longevity of TWTs. A TWT is an inherently high-gain, low-noise amplifier with wider bandwidth than that of a klystron. The TWT (Fig. 1) uses a slow-wave structure (either a coupled-cavity circuit or for purposes of this discussion, helix) to create interaction between a high-energy electron beam and an RF wave in a vacuum envelope. In a TWT, electrons are generated by a heated cathode in an electron gun assembly and launched into the interaction region. The electron beam is controlled by an electrode that switches it on and off by changing the control electrode potential (bias) to either positive or negative with respect to the cathode. The switching of bias voltages is performed by the modulator in the transmitter to transition the device from a conduction state to a cutoff state. The electron beam is focused by magnets along the axis of the TWT and the beam is accelerated by a high potential between the cathode and the anode (collector). The RF wave propagates from the input to the output through the slow-wave structure, and the highenergy electron beam gives up energy to the RF wave as it travels along the axis of the tube, providing amplification before the high-frequency signal reaches the RF output port. Unlike their solid-state counterparts, TWTs require high voltages to be applied to their electrodes, with proportionally higher voltages needed to produce higher RF output levels. For example, an 8-kW, X-band helix TWT requires an input voltage of about 14 kV while a 100-kW coupled-cavity TWT requires about 45 kV input voltage. Physically smaller mini-TWTs operate with input voltages from 3.5 to 7 kV. A good example of a TWT amplifier (TWTA) application is the radar transmitter shown in Fig. 2, which is typical of transmitters using other types of microwave tubes as well. A pulsed signal from the radar waveform generator is applied to an amplifier that employs RF power transistors to produce an output that drives the TWT. This signal is sent to the input of the TWT where isolators are used to ensure proper input matching and inter-stage isolation, and a PIN-diode switch is present to shut off the driver’s output to protect the TWT from overload. In addition to the TWT, the RF output section includes a dual-directional coupler to determine the RF output level as well as the reflected power level to protect the TWT from damage in high VSWR conditions. Other components include an isolator and often a harmonic suppression filter and waveguide switch that can divert the TWT’s output to a dummy load for testing. An arc detector is generally included in very-high-power transmitters, which senses breakdown in the waveguide and turns off the RF drive power to the TWT at high speed to prevent damage to its output port window. Other protective mechanisms cover excessive current in the high-voltage power supply, modulator, and TWT, which are carefully designed to prevent false alarms while providing high levels of safety. TWTs from various manufacturers vary considerably in many respects, and only through experience can amplifier and transmitter manufacturers such as dB Control determine which one is best suited for a specific application. There is ample reason for this caution since as the core element of the transmitter, which is the TWT, affects nearly every aspect of performance. Key TWT considerations include power supply requirements, operating voltage levels and power consumption, thermal design power dissipation and thermal design, size and weight, temperature, altitude and vibration performance, and demonstrated record of reliability. TWTs used for transponder amplifiers in satellites, where power is limited, are typical examples for the high efficiency and reliability figures that can be achieved by careful design of TWTs. The RF output power to prime power input ratio that describes real efficiency is greater than 60 percent for these devices, and recent reports show that efficiency of nearly 70 percent has been achieved. These TWTs also have proven to be highly reliable and have long operating lives (greater than 20 years) to provide uninterrupted service in communication and radar applications. Even today, for Ku-band and higher frequencies, TWTs are the only amplification devices used in satellites. The applications for TWTs include those that pose minimal constraints on size, weight, and power consumption. However, in others such as satellite transponders and most recently military unmanned aerial vehicles (UAVs), the RF power generation section must share the available space with massive amounts of signal processing, avionics, power supply, and other hardware. A solution to this problem was the creation of the mini- TWT which, as its name suggests, is a small version of a conventional TWT (typically about 7 in. long) and requires a lower-voltage power supply (to 8 kV). However, it is also limited in RF output power to about 200 W CW (1 kW peak), although retaining its broadband, high-frequency capabilities. These devices are available at frequencies to about 50 GHz. Impressive though the mini-TWT may be, it has greater potential when incorporated into a microwave power module (MPM). The MPM resulted from a tri-service (United States Air Force, Army, and Navy) vacuum electronics initiative launched in 1990, which had the goal of combining the best characteristics of VED and solid-state technologies to produce common, medium-power building blocks for radar, EW, and ECM systems that could be manufactured in high volume at reasonable cost. The ultimate goal of the program was to produce extremely small modules but ultimately resulted in modules that were considerably larger. However, they still consume less space than a traditional TWTA, are comparatively light in weight, and operate from power supplies ranging from 28 to 270 VDC. Today, dB Control and other manufacturers offer a wide array of MPMs for operation from S-band to W-band frequencies in CW and pulsed configurations, with RF outputs from less than 20 W to more than 1 kW with a 20 to 40 percent duty cycle, 100 to 400 µs pulse width, and variable pulse repetition frequency. In a classic MPM (Fig. 3), the RF signal path consists of a mini-TWT and a solid-state driver amplifier accompanied by an electronic power conditioner that acts as the high-voltage power supply for the TWT and control circuits. The power produced by the driver amplifier typically negates any reduction in gain resulting from the shortened helix length in the TWT. The MPM fully exploits the power-handling capability, bandwidth, efficiency, and heat-tolerance inherent in TWTs. MPMs are highly regarded not just for active electronically steered array (AESA) radar applications, but in synthetic aperture radar (SAR) systems in which long pulse widths are required, EW and ECM suites, and commercial and military satellite communications systems. dB Control MPMs are used in transmitters for radar and ECM applications. These products have exceeded all performance goals and are now in continuous production. The MPMs are employed in many UAVs in which the platforms’ prime power, size, and weight are very limited and long failure-free operation is essential. Continue to page 2 http://www.mwrf.com/Articles/Index.cfm?Ad=1&ArticleID=21520

milstar: TWTs Still Drive High-Power Systems Vacuum tubes may not have the sizzle of their solid-state counterparts, but in radar, satcom, EW, ECM, and other applications, their power/bandwidth characteristics remain unchallenged. Meppalli Shandas | ED Online ID #21520 | July 2009 The MPM is also useful as a transmitter module in an AESA system because power output can be increased one or more orders of magnitude greater than the power achieved with the solid-state power amplifier in the transmit/ receive (T/R) module. MPMs also have wider bandwidths and greater heat tolerance than solid-state amplifiers. AESA systems using MPMs as transmitter modules have been deployed in octave- bandwidth ECM systems and in airborne data link systems. Complete MPM-based transmitter line replaceable units (LRU) are also available. An example of a MPM-based transmitter suite for ECM applications developed by dB Control is shown in Figure 4. The suite operates from aircraft three-phase 115 VAC power. It consists of four MPMbased CW and pulsed transmitters covering 2 to 7 GHz and 6 to 18 GHz to produce the total 2-to-18- GHz frequency coverage. The suite was designed for the harsh conditions encountered in airborne environments, and can withstand gunfire vibration, operation at +100o C for short periods, and is compliant with MIL-STD461E. In addition to the solid-state driver amplifier, the RF input section includes isolators, directional couplers for sampling at various stages, bandpass filters, switches for selecting specific filters, and a TWT gain equalizer. A dual-directional coupler, forward and reflected power monitoring, and high-VSWR protection circuit follow the TWT. In many respects, the power supply is as important to performance, reliability, and longevity as the TWTs themselves. It must deliver the high voltages required by the TWTs, filter and condition the prime power, and generate and regulate all voltages required by the circuits in the ECM suite. The importance of the power supply led dB Control many years ago to begin manufacturing its own power supplies and even many of the individual components for those power supplies in order to ensure quality control. The ECM suite successfully met demanding requirements for performance over temperature, altitude, vibration, shock acceleration, explosive atmosphere, rain, humidity, and other factors, as well as EMC compliance. The suite delivers RF output power of 250 W under CW or pulsed conditions from 2 to 7 GHz and 100 W from 6 to 18 GHz, 1.5 kW peak (6-percent duty cycle) from 6 to 18 GHz, and to 300 W under CW or pulsed signal conditions from 6.5 to 18 GHz from its dual-transmitter “high-band” section. Despite the continuous increases in the performance of RF power transistors and MMIC amplifiers, and the use of high-power combining techniques to efficiently add the contributions of numerous high-power transistors into a common output, the TWT remains the power source of choice for a broad range of defense systems and some commercial and industrial applications with RF power outputs to 2.5 kW CW and 25 kW pulse at frequencies to 95 GHz. No single solid-state amplifier can deliver this level of peak-to-average power and bandwidth for most applications. In fact, the vast majority or EW and ECM systems both deployed and in development rely on either TWTs or some type of VED, and this is likely to remain the case for many years to come. supplemental information http://www.radartutorial.eu/08.transmitters/tx04.en.html

Wilno: A RUZA cem zanimaetsja,kosmicheskim musorom?Rossiiskix THAADov na gorizonte ne vidno.

Wilno: Spasibo Milstar.Thanck you.Nu ochen interesno.Ne znal.chto na THAADas GaAs,dumal 5 raz efektinei GaN.Ne uspeli prinyat na vooruzhenie -uspeli ustaret.Vo ka zhizn menjaetse.Voprosik:na koi bes rysskim supostatovskie sputniki svezi,esli sami proizvodiat takie zhe transpondery na TWT?Logiki ne vizhu.

milstar: 1.A RUZA cem zanimaetsja,kosmicheskim musorom?Rossiiskix THAADov na gorizonte ne vidno. woth THAAD http://www.raytheon.com/businesses/rids/products/rtnwcm/groups/public/documents/content/rtn_bus_ids_prod_thaad_pdf.pdf 9.2 kw.metra ,25344 MMIC ,X-band -primerno 2700 blochkow na kwadr. metr 2. Rossiiskix THAADov na gorizonte ne vidno Rekord GaAs na 10 ghz Fujitsu -100 watt awerage power ( w impulse do 1000 watt) Rossijskie GaAS na 10 ghz imejut 80 watt average power Wi twerdo ywerenni chto 10 ghz odnodiapazonnij AFAR RLS lutschee reschenie ? ------------------------------------------------------------------------------------------------- Dlja kakix zadach ? Wozmoznie alternativi za etu ze stoimost# dwuxdiapazonnaja RLS 10 ghz -PFAR 35 ghz -cassegr. antenna Y AFAR est' rjad preimuschestw ,no ni odno reschenie ne platonowskoe ################################################# S tochki zrenija awtora mozno rassmotret' wozmoznost' kombinazii 2 texnologij i 2 diapazonow ... Nedostatki odnogo reschenija/texnologii/diapazona budut kompensirowanni silnimi storonami drugoj ...

milstar: na koi bes rysskim supostatovskie sputniki svezi,esli sami proizvodiat takie zhe transpondery na TWT?Logiki ne vizhu. ? Sputnikowoj Sistemi swjazi s boewoj ystojschiwost'ju srawnimoj s milstar 44/20 ghz s nagruzkoj pod yadernuju wojnu ######################### w Rossii k sozaleniju net ... zapustit' rawnoe po masse na sootw. orbitu wozmozno (stoimost# protona dlja Rossii - 25-30 mln $) No sputnikow net ...

Wilno: Вопрос с РУЗОИ открыт?Методом исключения.Для прдупржедении о нападении иемется космическое "Око" и обзорные РЛС на ДЦМ по периметру.Ну и"Дон",как остаток ПРО Москвы.РУЗА,разрешение которои 20 см,в ПРО не вписывается,для предупреждения такое разрешение излишнее,а GBI-THAAD"made in Russia" даже на бумаге нет.Остается микроспутники да муссор.Вообшем-гражданскии радар-какои смысл секретничить?Или это "Булова Но 2"-корабль есть,возить нечего?На счет GaAs.Google дал инфо про радар AN/APG-77 ot Raptor'a.2000 модулеи по 10 W.Производитель утверждает,что это махимум,для большеи мошности нужны GaN,предел 100 w.Но тогда возникает неразрешимые проблемы с отводом тепла-летаюшая печка,а не стельс.Получается что корабельные Aegis SPY-1/3 и THAAD-не монокристалы а десятки тысяч передачикиов велечинои с кирпичь.Или я ошибаюсь?

milstar: Вопрос с РУЗОИ открыт? http://www.radiofizika.ru/services/radiolocation/mmdv-ruza/ Методом исключения.Для прдупржедении о нападении иемется космическое "Око" и обзорные РЛС на ДЦМ по периметру.Ну и"Дон",как остаток ПРО Москвы.РУЗА,разрешение которои 20 см,в ПРО не вписывается,для предупреждения такое разрешение излишнее,а GBI-THAAD"made in Russia" даже на бумаге нет. RUZA prodemonstrirowala w 1989 chto dostignuta moschnsot' megawatt w 35 ghz а GBI-THAAD"made in Russia" даже на бумаге нет Na bumage nawernjaka est' ,tolko eto gostajna .... 1. Officialnno soobschalos' o sistemax s-500,s-1000 2. dwux diapazonnaja RLS Mars http://www.rti-mints.ru/prls.htm Речь идет о прообразе радиолокационного информационного комплекса будущего - многофункциональной адаптивной РЛС типа “Марс” и его экспортном варианте “Марс-Э”. Это должен быть мобильный (перебазируемый) комплекс полной заводской готовности (ПЗГ), обладающий высокой универсальностью. Многофункциональная двухдиапазонная РЛС «Марс» Он может применяться как в системах ПРН, ККП, ПРО ракетно-космической обороны, так и для целей нестратегической ПРО наземного и морского базирования, использоваться в качестве базового информационного средства зон и районов ПВО (ВКО), а также высокоточного экспериментально-измерительного инструмента на полигонах и космодромах. Остается микроспутники да муссор.Вообшем-гражданскии радар-какои смысл секретничить? s woprosami po sekretnosti obraschajtes' w www.fsb.ru Или это "Булова Но 2"-корабль есть,возить нечего?На счет GaAs.Google дал инфо про радар AN/APG-77 ot Raptor'a.2000 модулеи по 10 W.Производитель утверждает,что это махимум,для большеи мошности нужны GaN,предел 100 w .Но тогда возникает неразрешимые проблемы с отводом тепла-летаюшая печка,а не стельс. Ob oni razreschimi ili net -ne znaju ,no nawernjaka est' 2700 modulej na 1 kwadratnij metr pri polnoj AFAR na 8.5 ghz . KPD w etom diapazone 50% . Esli impulsnaja moschnsot' 1000 watt , srednjaa 100 watt i KPD 50% to 100 watt* 2700= 270 kwt s odnogo kwadratnogo metra w diapazonax wische 10 ghz KPD GaAS i GaN padaet nize 50% ,na 35 ghz -25% Получается что корабельные Aegis SPY-1/3 и THAAD-не монокристалы а десятки тысяч передачикиов велечинои с кирпичь. Или я ошибаюсь? ############ THAAD polnaja AFAR s ploschad'ju 9.2 kw. metra i 25344 GaAs MIC Bloschki raspolagajutsja s h/2 8 ghz h= 300/8 = 370 mm h/2 =185 mm велечинои с кирпичь. ################ http://www.triquint.com/prodserv/markets/military/radar.cfm wiberite i posmotrite .pdf file Ranee na wse waschi woprosi otwechalos# w drugix thread naetom forume ###################################################

Wilno: Spacibo Milstar.

milstar: Spacibo Milstar. ne za chto . ne zabud#te chto s powischeniem chastoti s 8 ghz do 35 ghz ,chislo GaAS MMIC ywelichiwaetsja w 16 raz Esli mensche ,to degradacija parametrow AFAR THAAD samaja krupnaja polnaja GaAS AFAR 9.2 kw.metra 25 344 GaAS MMIC SBX 400 kw.metrow wsego 68 000 GaAS MMIC na 400 kw .metrow -stoit 800 mln $ ( s plawajuschej platformoj) toze X-Band .Opisanie priwedeno w PRO/BMDO i drugix thread

milstar: СВЧ - техника Электровакуумные приборы ЛБВ непрерывного (0,01...2 кВт) и импульсного (0,02 ... 30 кВт) режимов в диапазоне от 1 до 17 ГГц. ЛБВ миллиметрового диапазона (до 94 ГГц). Одно- и многолучевые клистроны непрерывного (0,1...100 кВт) и импульсного режимов (до 500 кВт и более). Малогабаритные импульсные клистроны (мощность до 2 кВт, масса 1 кг). Многолучевые клистроды для современных телевизионных передатчиков. Магнетроны для промышленного и медицинского применения (0,2...50 кВт). Миниатюрные синхронизированные магнетроны непрерывного режима (масса 120 г, мощность 30 Вт) для систем связи. Малошумящие электростатические усилители, обеспечивающие защиту приемного устройства от падающей мощности до 20 кВт в импульсе при среднем значении до 400 Вт. Лампы обратной волны миллиметрового и субмиллиметрового диапазонов (до 1100 ГГц). http://www.istok-mw.ru/products/uhf/products5_1.htm

milstar: http://www.istok-mw.ru/science/publics/journal/UHF2009-01.pdf

milstar: http://www.l-3com.com/edd/mpm/index.htm Click on each tube type for detailed specifications available in pdf format MPM Type Frequency (GHz) Output Power (Watts) Input Voltage Prime Power ( Watts) Dimensions (Inches) M1201 2.0 - 6.0 80 28 VDC 375 10.75 x 7 x1.25 M1220 6 – 18 60-100 270 VDC 375 7.5 x 6.25 x 1 M1221 6 – 18 60-100 28 VDC 400 7.8 x 7.5 x 1.25 M1225 6-18 100-125 28 VDC 425 see outline M1231 12.75 – 14.5 80 270 VDC 325 7.5 x 6.25 x 1 M1232 12.75 – 14.5 75 115/208 VAC 400 7.5 x 6.2 x 1.6 M1270 X-Band 1 kW pulsed 28 VDC 275 11 x 6 x 2 M1282 26 – 40 20 28 VDC 350 7.5 x 8.5 x 1.25 M1300 30 - 36 26 - 40 50 30 28 VDC 350 7.5 x 8.5 x 2.6 M1290 30 – 31 25 270 300 see outline M1340 43.3 – 45.7 40 120 VAC 300 12 x 10 x 3.5

milstar: L-3 Communications Electron Devices Awarded Contract to Supply Microwave Tubes for AMRAAM Missile Program ########################################################################## SAN CARLOS, CA, July 28, 2005 – L-3 Communications Electron Devices (L-3 Electron Devices), a division of L-3 Communications Corporation, announced today that it has been awarded a contract from Raytheon Missile Systems Division, based in Tucson, AZ, for the fourth release of a six-year requirements contract to supply all traveling wave tubes used in the AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM). Under the terms of the overall contract, L-3 Electron Devices could deliver over 3,000 tubes to Raytheon. Deliveries for this latest order will begin in early 2006 and run through mid-2007. L-3 Electron Devices’ traveling wave tubes are used in the active seeker of the AMRAAM missile. The missile is used extensively by the U.S. Air Force, U.S. Navy and more than 20 countries, and is the preeminent beyond-visual-range active radar missile in terms of accuracy and effectiveness. “Raytheon’s AIM-120 AMRAAM missile is the world’s most capable and widely used medium-range missile,” said Jim Benham, president of L-3 Electron Devices. “We have been a supplier of these tubes to the AMRAAM program under previous contracts, and this award permits us to continue to deliver to this important weapons system.” L-3 Electron Devices is a worldwide supplier of microwave power devices to all major prime contractors on key military programs, including missile seekers, aircraft navigation and landing systems, airborne and ground radars and electronic warfare and communications systems. The company also supplies transmitter tubes to the broadcast television industry. L-3 Electron Devices has offices in San Carlos, CA, and Williamsport, PA. To learn more about L-3 Electron Devices, please visit the company’s web site at www.L-3Com.com/edd. Headquartered in New York City, L-3 Communications is a leading provider of Intelligence, Surveillance and Reconnaissance (ISR) systems, secure communications systems, aircraft modernization, training and government services and is a merchant supplier of a broad array of high technology products. Its customers include the Department of Defense, Department of Homeland Security, selected U.S. Government intelligence agencies and aerospace prime contractors. To learn more about L-3 Communications, please visit the company's web site at www.L-3Com.com.

milstar: kompanija Gikom Rossijskaja Giro -LBW (gyro -twt) 180 kwt w impulse 35 ghz ,polosa 3500 mgz (razr. sposbnost* RLS bez extrapoljazii polosi 71 mm) http://www.gycom.ru/products/pr3.html wot odin iz awtorow Денисов Григорий Геннадьевич председатель экспертного совета Тел. 831-436-99-20 e-mail: den@appl.sci-nnov.ru 2 lampi (MMW radar ispolzuet toze dwa ysilitelja) = 360 kwt Dalnost* Warloc 1.8 metra/94 ghz /100 kwt w impulse dlja yglow elevazii bolee 30 grad 700 km Ky antenni 62.7 db (primerno 2 mln po moschnosti ) pri schirine lucha 0.1 grad na 35 ghz s antennoj 5.4 metra schirina lucha budet 0.1 grad kak SBX X band s 18 metrow diametrom dalnost* s 360 kwt do 1000 km В ГИКОМе работают высококвалифицированные специалисты в различных областях радиофизики и электроники, в том числе более 10 докторов наук и около 40 кандидатов физико-математических и технических наук. Среди его сотрудников 8 лауреатов Государственной премии СССР, 3 человека удостоены этой премии дважды.

milstar: J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin Plasma Science and Fusion Center, Massachusetts Institute of Technology, Power levels of up to 180 kW, 30 dB gain and 10% bandwidth ##################################### were achieved in a 35 GHz gyro-TWT using a helically #################################### corrugated cylindrical interaction structure [6]. ################################## [6] G.G. Denisov et al., in Proceedings of the 27th International Conference on IRMM Waves (Ref. [2]), p. 197. E-mail i tel . awtora dannoj lampi wische ... Although these are very impressive advances, they face significant obstacles in extension to operation at higher frequency, such as 95 GHz at high average power

milstar: UCD Gyro-TWT Program: 94-GHz TE01 Gyro-TWT The threestage amplifier is predicted by our large-signal simulation code to generate 105 kW at 94 GHz with 21% efficiency, 45 dB saturated gain and 5% constant-drive bandwidth./5000 mgz/ ################################### D.B. McDermott, Y. Hirata, S.B. Harriet, A.T. Lin1, D.A. Gallagher2, C.M. Armstrong2, Q.S. Wang3, C.K. Chong4, K.C. Leou5, H.E. Huey3 and N.C. Luhmann, Jr. Department of Applied Science, University of California, Davis 1 Department of Physics, UCLA, Los Angeles, CA 2 Northrop Grumman Corp., Rolling Meadows, IL ################################### 3 Micramics, Inc., Santa Clara, CA 4 Hughes Electron Dynamics Division, Torrance, CA ################################## 5 Engineering, National Tsing Hua University, Taiwan

milstar: Wopros 1. -Skolko stoit 35 ghz /3500 mgz /180 kwt - Zakaz 10 stuk primerno 100 000 $ za stuku 2. -Mozno parallelit* dlja naraschiwanija moschnsoti (MMW radar 94 ghz modifikazija -2 ysilitelja) - Wopros k razrabotchiku RLS ,mozno i bolsche ...30 3. - Esli bil bi zakaz i finansirowanie NIOKR wi bi wzjalis* razrabotat* 94 ghz /3500 mgz /100 kwt - wozmozno

milstar: http://bibliothek.fzk.de/zb/berichte/FZKA6957.pdf nemezkaja tochka zrenija 2004 goda .priwedeni dannie po rossijskim lampam ... gyro-twt /lampa Denisova Gycom) potenzialno sposobna k bolee schirokoj polose chem gyroklystron i bolee prigodna k primeneniju w RLS i swjazi Gycom Gyro-twt 180 kwt impuls 35 ghz/3500 mgz Warloc radar Gyroklystron 100 kwt impuls 94 ghz/700 mgz

milstar: ETI has produced ten's of thousands of TWTs at rates as high as 100/month to support numerous communications, radar and EW systems throughout the world. Government systems include the F-14, F-15 & F-18 weapons control radars, the JSTARS airborne surveillance radar, the AMRAAM missile seeker, the Firefinder & Patriot ground based mobile radars and several surface & airborne MILSATCOM uplinks. Commercial systems include point-to-multipoint telecom, SATCOM uplink and instrumentation. Recently ETI has focused on bringing forward a family of high power high efficiency millimeter-wave helix TWTs for communications, radar, EW and instrumentation applications. http://www.l-3com.com/eti/product_lines_military_twt.htm

milstar: 1. http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Wideband Radar for Ballistic Missile Defense These boxes supported various communications, radio astronomy, and radar functions. The interchangeable boxes are 8 Ч 8 Ч 12 ft, which is large enough for the high-power (400 kW peak and 200 kW average) 2.Radars for Ballistic Missile Defense Research http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2detectsatellitiesplanets.pdf significantly advanced the state of the art of X-band high-power technology. A number of firsts were achieved, including the development of a 500-kW CW transmitter with its associated highpower waveguide components, an ephemeris-controlled frequency and range-tracking system, a helium- cooled maser receiver preamplifier, 3.http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2ballisticmissiledefense.pdf The Laboratory designed a hard-tube modulator, shown in Figure 8, which when operated with eight tubes (six tubes are shown in the photo) could provide pulses of up to 180-MW peak power and 2-MW average power. 4.http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=141335 Abstract Jet Propulsion Laboratory contracted with Varian Associates to design, build, and deliver replacements for VA-949J klystrons in the X-band planetary radar transmitter on the Goldstone, CA, 70 m antenna. Output power was to be increased from 200 kW to 250 kW CW per klystron, and full DC beam power was to be dissipated in the collector. Replacements were to be made with a minimum of transmitter modifications. Two model VKX-7864A klystrons were subsequently built and delivered. The design of these klystrons and the results of their performance testing are described. The planetary radar transmitter is now operating with these two klystrons --

milstar: 9S32 RLS The low noise receiver (noise factor 3 dB) uses an electrostatic amplifier tube that can withstand leakage powers of several hundred Watts without damage and with near-instantaneous recovery to full gain and sensitivity when the transmitted pulse ends. ***************************************************************************** 7volt na 50 omnuju antennu eto 1 watt na wxode priemnika 70 volt eto 100 watt [BR]http://www.ausairpower.net/APA-Russian-SAM-Radars-DKB.html#mozTocId551440 Thus, the loss attributed to solid-state protective devices commonly required in Western radars is also absent. Dlja sravnenija s priemnikom S-300V ,kotorij rabotaet ,kogda na wxode bolee 100 volt - ########################################################################## Nize na linke sxema woennogo GPS priemnika ,kotorij rabotosposben pre prewischenii pomexi nad signalom na 120 db ########## http://nu-trek.com/nu-trek/rf-applications.html/#RF%20receiver ... no clipping nastupaet pri 0 dbm ili daze mensche 0 dbm = 0.224 volta

milstar: Design Amerikanskij ,lampi Sowetskie/Rossijskie ( widni na klipe) Swetlana Dengi na etom ne zarabotat' (ochen yzkij krug ljubit starie vinilovie zapisi s Karojanom,Furtwenglerom,M.Kallas,M del Monaco ,Renata Tibaldi ,H.Dernesch,M.Lanza ,Rachamninova &) No dlja sozdanija image predprijatiem VPK (non profit ) wpolne mozno ispolzowat . ---------------------------------------------------------------------------------------------------- (wmeste w Mariinskim teatrom) http://www.youtube.com/watch?v=yRV-8UHTsqY&feature=related podeschewle -nemezkij lampьovij ysilitel ,toze s lampami Swetlana 6550 http://www.youtube.com/watch?v=bEYGOWHH2QY

milstar: Audio Reserach -polnij lampowij ysilitel 2*60 watt na lampax Swetlana KT120 -4500$ retail http://www.youtube.com/watch?v=WSp7Jjp77Rg&feature=related podeschewle -nemezkij lampovij ysilitel Magnat RV2 2*50 watt ,toze s lampami Swetlana 6550 3500 $ retail http://www.youtube.com/watch?v=bEYGOWHH2QY Dlja komnati w Breznewke 18-20 kw.metrow wpolne podojdet ...dlja bolschinstwa ljubitelej muziki Lampi mirowogo kachestwa ,ysiliteli toze mozno delat (non profit ,nebolschie serii dlja ylutschenija image VPK kompanij) Ransche etim zanimalis Ленинградское объединение - "Океанприбор". ysiliteli Brig -001 NPO Torij -kolonki Elektronika 100 as

milstar: Компания TMD Technologies разработала блок генерирования мощности СВЧ излучения следующего поколения для РЛС Х-диапазона ВАШИНГТОН, 9 октября. (АРМС-ТАСС). Компания TMD Technologies разработала блок генерирования мощности СВЧ излучения следующего поколения MPM (microwave power module) PTX8400 для РЛС Х-диапазона. Новая модель имеет ряд усовершенствований по сравнению с более ранними вариантами, специально разработанными для РЛС два года назад. Как сообщила TMD Technologies, модуль PTX8400 мощностью 1 кВт представляет оптимальный вариант для объектов, оснащаемых высокотехнологичными РЛС, для которых масссо-габаритные характеристики являются критичными. Среди них, например, беспилотные летательные аппараты и вертолеты. Основным усовершенствованием блока является применение лампы бегущей волны (ЛБВ) TWT (travelling wave tube) кольцевой схемы, которая обеспечивает более высокое усиление на единицу длины, чем ЛБВ спиральной схемы, и дополнительное внутреннее пространство для более мощных перспективных вариантов. Кольцевая схема также обеспечивает более ровную полосу пропускания и более низкие по частоте гармоники, что позволяет снизить уровень шума. Новый блок имеет усовершенствованную встроенную аппаратуру автоматизированного контроля BITE (built-in-test equipment), которая теперь имеет интегральный дисплей для проверки состояния устройства в любое время. Новый блок PTX8400 имеет меньшее энергопотребление и питается от источника постоянного тока напряжением 28 вольт, генерируя шумы с очень низкой фазовой характеристикой, что является весьма важным в зависимости от назначения РЛС Х-диапазона. Коэффициент заполнения для последовательности импульсов составляет 5 проц с возможностью повышения этой характеристики до 10 проц. 11.10.2011 Права на данный материал принадлежат АРМС-ТАСС Материал был размещен правообладателем в открытом доступе.

milstar: http://www.e2v.com/news/e2v-launches-new-mini-helix-twt-allowing-systems-designers-to-use-a-single-rf-amplifier-over-the-multi-octave-bandwidth/ e2v, a leading global provider of technology solutions for high performance systems, is launching its new N20180 mini helix Travelling Wave Tube (TWT). This latest addition to its range of TWTs now allows system designers to use a single RF amplifier over the multi-octave bandwidth, offering the advantages of reduced system cost and higher reliability. The new N20180 device offers performance over its entire operating frequency range of 2–18GHz, giving system designers and integrators higher output levels and greater efficiency whilst maintaining a small, lightweight package, designed for the harshest of environmental conditions.

milstar: Dual C/X-Band Helix TWT Series http://www.cpii.com/docs/datasheets/66/VTX-6379E11.pdf Dual band, CW Helix TWT Series, 1000 Watts, 5.85 - 6.425 GHz, and 2000 Watts, 7.90 - 8.40 GHz, periodic-permanent-magnet focused, coaxial input, waveguide otuput, forced-air cooled. FeaTureS moDel • Dual Band (C/X) • 5.85 - 6.425 GHz, 1 kW VTX-6379E1 7.90 - 8.40 GHz, 2 kW • Coaxial Input / Waveguide Output • Any Mounting Position • Weight: 25 lbs. max • Forced-Air Cooled • Separate Equalizer provided for C-Band

milstar: http://www.radiant.su/files/images/e2v/n20180.pdf The N20180 is an ultra-wideband helix travelling wave tube. It is capable of providing 160 W output power and operates over the frequency band 2.0 – 18 GHz. Saturation gain is typically 38 dB. Weight Total weight of TWT shall not exceed 400 g.

milstar: The initial development of the MPM was highlighted by the demonstration of a 100-W transmit module operating from 6- to 18-GHz with an overall efficiency at band center of 40 %. The 50-dB module gain is equally balanced between the MMIC driver and the vacuum power booster (VPB). This fluid cooled version weighs 363 grams and has a volume of 120 cm3. Relative to alternate technologies, this MPM offers a four-fold advantage in efficiency over GaAs MMIC alone, a greater than 20-dB improvement in noise figure over the TWT alone, and a more than ten-fold reduction in size relative to either a TWTA or GaAs SSPA. Taken overall, these improvements represent a dramatic breakthrough in microwave transmitter technology. The packaging, high overall efficiency and bandwidth capabilities of the MPM make it very useful for a wide range of commercial and military applications. http://www2.l-3com.com/edd/pdfs/mpmsforradarwebarticle.pdf http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA393327

milstar: http://www.thalesgroup.com/Markets/Security/Documents/Airborne_radars/ http://www2.l-3com.com/edd/pdfs/EDDDivisionbrochure.pdf

milstar:

milstar:

milstar: http://www.microwavejournal.com/articles/print/9841-ka-band-traveling-wave-tube-500-w-peak-350-w-cw Ka-band Traveling Wave Tube: 500 W Peak, 350 W CW Thales Electron Devices August 1, 2010

milstar: “Given the large volume of TWTs on today’s satellites, there is no alternative” to the two existing manufacturers, Celli said. “I don’t see anybody out there with the guts to start a TWT plant. It is extremely expensive. Demand has increased. There used to be 20 or 25 TWTs per satellite. Now you’re talking 90 to 95, even 105 per satellite. And particularly for Ka-band, producing these things is an art. It is difficult to find and train people, especially as we go up in power to 130 and 170 and toward 200 watts per TWT.” Reynald Seznec, chief executive of satellite builder Thales Alenia Space of France and Italy, said satellite hardware manufacturers have reduced their delivery time and lowered their overhead to remain profitable in a tough market. Increasing production of a given component, in this case TWTs, is risky because of the capital expense required and the market’s uncertain future demand. Evert Dudok, chief executive of Astrium Satellites of Europe, said: “I can confirm that TWT production is not the easiest business. L3 and Thales — all of us buy from both of them — need to be sure the demand will be there. If there is a risk that some other supplier — perhaps in India, perhaps in China — will emerge, they may find demand softening.” One satellite fleet operator preparing to order a Ka-band satellite said the TWT issue alone will add three to six months to the manufacturing time. http://www.spacenews.com/article/component-crunch-slows-delivery-ka-band-communications-sats

milstar: 9 октября 2014 г на площадке ОАО «НПП «Алмаз» (г. Саратов) по инициативе холдинга ОАО «Российская электроника» состоялся Координационный Совет разработчиков и производителей радиоэлектронной аппаратуры и электронной компонентной базы. На нем были рассмотрены мероприятия по обеспечению перспективных разрабатываемых и серийно выпускаемых ОАО «Концерн «Радиоэлектронные технологии» радиоэлектронных систем, отечественными изделиями СВЧ электроники разработки организаций ОАО «Российская электроника», в т. ч. в порядке импортозамещения. В совещании приняли участие представители ведущих научно-производственных предприятий радиоэлектронной промышленности из Москвы, Фрязино, Нижнего Новгорода, Саратова, Калуги, Таганрога, Ростова-на-Дону. Результатом совещания стали конкретные мероприятия, направленные на решение обозначенных в рамках Координационного Совета задач. http://i-korotchenko.livejournal.com/955616.html#comments 8-18 ghz 250 watt ,potr 2100 watt, 17 kg

milstar: В таблице 2 приведены основные виды электровакуумных СВЧ приборов и устройств, имеющие мировой и российский приоритет, технические и технологические решения которых защищены патентами Российской Федерации. По совокупности своих технических и эксплуатационных характеристик эти приборы являются лучшими в своих классах и определяют мировой технический уровень. В таблице приведены области применения этих СВЧ приборов, лидирующие предприятия-разработчики и изготовители, а также представлены применяемые для этих же целей приборы за рубежом и их изготовители. http://www.hse.ru/data/2013/02/12/1308493137/СПИ%20ТП%20СВЧ%20технологии%2025%2012%202012.pdf СТРАТЕГИЧЕСКАЯ ПРОГРАММА ИССЛЕДОВАНИЙ технологической платформы «СВЧ технологии» Утверждена 17 декабря 2012 года на заседании Наблюдательного совета технологической платформы «СВЧ технологии» под председательством А.С. Якунина Директора Департамента радиоэлектронной промышленности Министерства промышленности и торговли Российской Федерации Основными потребителями СВЧ приборов и устройств являются предприятия ОПК радиоэлектронного профиля, разрабатывающие и серийно выпускающие радиоэлектронную аппаратуру прежде всего военного и, наряду с ней, аппаратуру двойного и (или) гражданского назначения. Наиболее крупными из них, формирующими рынок радиоэлектронной военной продукции являются предприятия, входящие в ОАО «Концерн ПВО «Алмаз-Антей» (ОАО ГСКБ «Алмаз-Антей» (Москва), ОАО «НИИ приборостроения им. В.В.Тихомирова» (Жуковский Московской обл.), ФГУП «ГРПЗ» (Рязань), ОАО «НИИ «Стрела» (Тула), ОАО МНИИ «Альтаир», ОАО «ВНИИРТ» (Москва), ОАО «ННИИРТ» (Нижний Новгород), а также ОАО «КБП» (Тула), ОАО «КБМ» (Коломна Московской обл.), ОАО «ЦКБА» (Омск), ФГУП «КНИРТИ» (Жуков Калужской обл.), ОАО «Корпорация «Тактической ракетной вооружение», ОАО ГосМКБ «Вымпел», ОАО ГосМКБ «Факел», ОАО «Российские космические системы», ФГУП «ЦНИИ «Комета» (Москва) и др. Разрабатываемые и выпускаемые ими системы радиоэлектронного вооружения на период до 2020 года будут в основном определять загруженность предприятий ОПК, в том числе и СВЧ подотрасли. Только по номенклатуре ФГУП «НПП «Исток» (Фрязино Московской обл.), разрабатывающему и серийно выпускающему СВЧ приборы и устройства для более 100 образцов современного и перспективного вооружения, объемы производства к 2017-2018 гг. планируется увеличить: по кристальному производству транзисторов и МИС СВЧ  в 26 раз; по производству модулей СВЧ, в том числе для АФАР  в 12 раз; по электровакуумным СВЧ приборам и КИ СВЧ  в 2,3 раза; по радиоэлектронным устройствам  в 4 раза.

milstar: В РКС уже разработана уникальная система передачи научной информации на огромное расстояние, с телескопа на Землю, огромных массивов информации со скоростью в 1200 мегабит в секунду. Это в 12 раз больше, чем в высокоскоростном домашнем Интернете. Ничего подобного пока никто в мире не достигал, — говорит Кондрашов. — «Сердце» этого передающего комплекса — лампа бегущей волны. По своим характеристикам ей сегодня нет равных, например, к.п.д. более 70 процентов, что значительно выше, чем у нынешних законодателей моды такой техники французов. При этом цена российской лампы будет в два раза ниже, чем предлагают французы. Новая российская лампа создана коллективом Саратовского предприятия АО «НПП «Алмаз» по заказу и техническому заданию РКС. Это яркий пример того самого импортозамещения, о котором у нас так много говорится в последнее время. Санкции заставили осознать, что наши ученые и инженеры еще не разучились создавать уникальную технику. Кстати, лампы бегущей волны времен СССР ни в чем не уступали зарубежным. А потом мгновенно ушли в «небытие», на смену пришел импорт. Почему? Одна из причин в том, что для таких ламп нужны практически абсолютно чистые материалы — молибден, вольфрам, медь. Заводы, которые их выпускали, по разным причинам прекратили существование. И вот в последнее время отечественная цветная металлургия вновь начала делать такую «чистоту», и как следствие — российским инженерам удалось создать уникальные лампы. «Миллиметрон» — лишь одна сфера их применения. По мнению Кондрашова, работа над проектом «Миллимитрон» даст импульс развития для всего космического приборостроения в нашей стране. К примеру, созданные в РКС передающие устройства на основе новых ламп будут использоваться при создании новых отечественных космических аппаратов связи. Это серьезный прорыв отечественного приборостроения в вопросе импортозамещения. КОММЕНТАРИЙ Рудольф Бакитько, сотрудник РКС, лауреат Ленинской и Государственной премий: — Когда рассказываю молодежи, что на первом аппарате «Фобос», который долетел к спутнику Марса в 1987 году, вся элементная база была отечественной, они не верят. А ведь на самом деле в СССР была мощная электронная промышленность, ни в чем не уступавшая зарубежной. И задачи с ее помощью решались не меньшей сложности. Увы, в кризисные годы многое было потеряно. Сейчас она начинает возрождаться, для чего нужно строить новые заводы, на устаревших современную микроэлектронику не создашь. Когда несколько лет назад у нас были совместные проекты с китайцами, под них всего за два года они построили семь суперсовременных предприятий. http://russianspacesystems.ru/2016/06/29/begushhaya-po-volne/ https://rg.ru/2016/06/28/rossijskij-kosmicheskij-teleskop-razgadaet-tajnu-temnoj-materii.html Холдинг «Росэлектроника» Госкорпорации Ростех является крупнейшим в России разработчиком и производителем СВЧ-электроники, объединяя легендарные в отрасли предприятия – фрязинский «Исток», московские Государственный завод и НПП «Пульсар», саратовский «Алмаз». Именно они на протяжении десятков лет обеспечивают электронную базу отечественного аэрокосмического комплекса. Например, специалисты «Алмаза» уже более полувека изготавливают выходные усилители радиопередающих устройств для космических аппаратов разных типов и назначения. Именно эти изделия определяют главные тактико-технические характеристики космических связных систем в целом. Всего разработано более 20 типов ЛБВ, работающих в различных диапазонах частот. Ими комплектовались, в частности, пилотируемые космические корабли типа «Союз» и «Салют», Российская космическая станция «Мир», межпланетные аппараты «Венера» и «Марс», связные спутники «Молния-1», «Молния-2», «Горизонт», «Радуга», «Глобус-1» и «Глобус-1М», «Луч», «Галс», «Целина», «Экспресс», «Меридиан» и другие. https://rostec.ru/innovations/projects/4520604/ Проект, в котором принимают участие 32 организации, в том числе из Италии и Нидерландов, возглавляет ФГУП «НПО им. С.А. Лавочкина». НПП «Алмаз» разрабатывает для «Миллиметрона» ЛБВ с заданными характеристиками: срок службы – более 20 лет, КПД – более 60%, а также способность обеспечить с высокой скоростью передачу больших объемов информации по каналам спутниковой связи, работающим в диапазоне 2 см. Уже в 2019 году предприятие планирует начать поставки изделий. В то же время московское АО «НПП «Торий» разрабатывают новый усилитель для уникального российского радиотелескопа РТ-70. В настоящее время аппаратура работает в режиме сложения мощностей двух усилителей на одну антенну до уровня 160 кВт. Цель новой разработки заключается в создании прибора сразу на 200 кВт непрерывной мощности при минимальном увеличении мощности питания за счет качественного повышения электронного КПД. Опытные образцы нового изделия планируется изготовить в 2018 году. Радиотелескоп РТ-70 участвует в пассивном наблюдении собственного излучения небесных тел, а также в активных экспериментах, связанных с зондированием космических объектов мощным электромагнитным излучением, с последующим анализом принятого сигнала. Комплекс не имеет аналогов в мире, является основным исследовательским инструментом в обеспечении астероидной безопасности, космической связи, слежения за дальним космосом, в частности, в рамках программ «Спектр-Р», «Луна-Глоб», «Спектр-РГ», «Фобос-Грунт». Обеспечение надежных каналов космической связи позволяет формировать разнообразные функциональные системы и сервисы, в частности, системы навигации, мониторинга метео- и ледовой обстановки, зондирования Земли. Ожидается, что в ближайшее время с помощью спутниковой связи будет обеспечиваться широкополосный доступ в Интернет.

milstar: http://almaz-rpe.ru/production/wideband_lbv/ © 2007–2019 ОАО «НПП «Алмаз» Широкополосные ЛБВ (НПЦ «Электронные системы»)

milstar: ЛБВ для систем спутниковой связи (НПЦ «Электронные системы») http://almaz-rpe.ru/production/lbv_satellite_sys/

milstar: http://jre.cplire.ru/jre/nov16/18/text.pdf

milstar: В частности, представлена первая российская бортовая лампа бегущей волны (ЛБВ) с охлаждением за счёт инфракрасного излучения в открытое космическое пространство. Изделие показано в рамках Международного авиационно-космического салона МАКС-2019 в подмосковном Жуковском. Новинка получила обозначение «УВ-А2014». Она спроектирована специалистами НПП «Алмаз» (входит в «Росэлектронику»). Утверждается, что лампа позволяет снизить тепловую нагрузку на систему обеспечения терморегуляции космического аппарата более чем в два раза. А это увеличивает стабильность работы спутника в режимах приёма-передачи информации. Изделие «УВ-А2014» может применяться в гражданских спутниках и в специальных космических аппаратах связи. Рабочий диапазон частот — Ка. Выходная мощность достигает 130 Вт, коэффициент усиления — 50 дБ. «В настоящее время в космических аппаратах используются приборы зарубежного производства. Наша разработка позволит отказаться от импортных ЛБВ, что существенно сократит затраты на комплектующие для космических аппаратов, уменьшит зависимость от импортных поставок и повысит технологическую безопасность страны», — заявляют разработчики. https://3dnews.ru/993313

milstar: New Generation Mini-TWTs Design modeling of key areas of the TWT, coupled with rapid prototyping has seen a new family of mini-TWT tubes evolve, using the standard mini-TWT as the host design vehicle. The result is three new mini-TWT ranges: • The N20173 6 to 18 GHz TWT range, achieving a minimum 100 W • The N20160 4.5 to 18 GHz TWT range, 140 W typical • The N20154 13.75 to 14.5 GHz (Ku-band) TWT range, achieving a minimum 120 W The N20173 Current standard mini-TWTs typically operate over this 6 to 18 GHz bandwidth, but fall short of output power in the upper frequency range. The design driver for the N20173 (shown in Figure 1) was to increase the efficiency of the new device at higher frequencies without degrading performance at the lower end of the operating band. This was achieved by the use of a Slow Wave Structure (SWS) with a novel phase velocity taper. Consequently, the new N20173 tube achieves >100 W over the full operating frequency band and the new RF structure reduces the second-harmonic output to < –9 dBc at 6 GHz. Figure 2 shows the power to frequency performance of the N20173 compared to e2v’s standard mini-TWT. Also, an optimized coaxial TNC output achieves better than 2.2:1 VSWR and variants within the range include two- and three-stage collectors and a focus electrode switched option for pulsed or CW operation. The N20173 maintains the compact design of the standard e2v mini-TWT, being 220 mm long, 27 mm wide and 29 mm high, with a mass of less than 320 g. It can operate at base plate temperatures up to 140°C and altitudes up to 70,000 ft, under severe shock and vibration levels. The N20160 There has recently been increasing demand for higher-powered mini-TWTs capable of operation over the extended 4.5 to 18 GHz bandwidth. Thus, the N20160 device (shown in Figure 3) has been designed as a drop-in replacement for the standard mini-TWT, capable of operation at the same voltages and maintaining the same space envelope. The increased performance has been achieved through a combination of efficiency enhancement, the utilization of velocity tapers in the slow wave structure and increased beam current. The N20160 device also offers a minimum of 140 W between 6 and 13 GHz, more than 100 W at 18 GHz and more than 50 W at 4.5 GHz. The maximum RF drive required for saturation is 22 dBm, and the small-signal gain achieved mid-band is 59 dB. With optimization of the slow wave structure it has been possible to enhance the second-harmonic performance, which is a dominant characteristic of multi-octave devices. The device typically achieves second-harmonic levels of 1 dBc at 4.5 GHz and –10 dBc at 6 GHz. Figure 4 shows the power versus frequency performance of the N20160 compared to e2v’s standard mini-TWT Pre-production N20160 models have been tested using both dual- and three-stage collectors, achieving prime powers of less than 460 W. This increased performance has been achieved while maintaining compact size and weight—220 mm long, 27 mm wide and 29 mm high, with a mass of 320 g. The N20154 The N20154 mini-TWT (shown in Figure 5) has been developed to satisfy the ever-increasing demand for low-cost, lightweight, high-efficiency, compact TWTs for communication and data link applications. The mini-TWT’s design moves away from broadband convention and is optimized specifically for operation over the narrow communications band. This gives the advantage over broadband devices of improved linearity and gain flatness.. https://www.microwavejournal.com/articles/6178-new-generation-travelling-wave-tubes

milstar: Summary form only given, as follows. For future military radar applications high frequency, light weight TWTs become more and more important. To cover this market, TTE (Thomson Tubes Electroniques) started the development of a 94 GHz TWT. The goal of this program was a TWT (double comb delay line structure) in the 94 GHz frequency range with an instantaneous bandwidth greater 500 MHz (tunable within 1 GHz) and an output peak power greater 200 W in the center of the band (150 W over the band) for a duty cycle of max. 10%. In a second mode (different operating point) the goal for the output power was more than 100 W peak over the band and a duty cycle of max. 20%. Further parameters were the delay line voltage below 22 kV, a grid voltage swing of max. 400 V and mass smaller 1300 grams. The technical base of this program was TTE's experience in development and production of TWTs in the 30, 35 and 60 GHz frequency range. From there we started with the modification and adaptation of the standard technologies and TWT design, to be applicable for the special requirements in the 94 GHz range, concerning the small mechanical dimensions and allowed tolerances. The basic design and main test results of the 94 GHz TWT are the content of this paper. https://ieeexplore.ieee.org/abstract/document/847401

milstar: https://almaz-rpe.ru/products/ Широкополосные ЛБВ УВ-А3002 УВ-А3004 УВ-А3018 УВ-А3018М УВ-А3024 УВ-А3025 УВ-А3026 УВ-395 УВ-518 УВ-520 УВ-532А, Б УВ-533А

milstar: https://almaz-rpe.ru/products/bortovye-lbv/uv-704/ В настоящее время предприятие выпускает приборы в C, X, Ku, и Ka диапазонах. Данные ЛБВ обладают высокой надёжностью — долговечность до 150 тыс. ч., гарантийный срок эксплуатации 25 лет, что соответствует уровню лучших мировых образцов. За более чем шестидесятилетнюю историю своего существования предприятием было разработано 160 типов ЛБВ непрерывного действия и 60 типов импульсных ЛБВ, что составляет примерно 50% всех ЛБВ, разработанных в СССР и России. https://almaz-rpe.ru/about/subunit/elektronnye-sistemy/



полная версия страницы