Форум » Дискуссии » ICBM ss-18+,SLBM -ss-n-28 /РТ-23УТТХ BARK (продолжение) » Ответить

ICBM ss-18+,SLBM -ss-n-28 /РТ-23УТТХ BARK (продолжение)

milstar: РТ-23УТТХ BARK http://nvo.ng.ru/concepts/2007-11-16/1_sochetanie.html Стартовый вес, тонн 81,0 Забрасываемый вес, тонн 3,05 Максимальная дальность, тыс.км 9,0(?) Russia planned to modernize its force with the addition of the new SS-NX-28 and new Borei Class ballistic missile submarines. The new Grom SS-N-28 was designed to provide improved accuracy compared to the previous SS-N-20, but is otherwise apparently a straightforward development of this system. The SS-NX-28, unlike previous Russian SLBMs, is the first to be totally developed and manufactured within Russia's borders by the Makeyev Machine-Building Design Bureau http://www.fas.org/nuke/guide/russia/slbm/r39m.htm W Moskwe na awgust 2008 bilo 500 000 kwartir stoimost'ju 1 mln $ i wsche Gosreservi primerno 450 mlrd $ Wideljautsja sredstwa Arzamas-16 - 1.5-2 mlrd $ Glonass - bolee 2 mlrd $ 20 AN-124 -4 mlrd $ Esli KB Makeewa soxranilo tex.wozmoznsoti neobxodimo rassmotret' wozrozdenie proekta BARK Y nix na sklade 3 stuki est' Oceniwaja priblizitelno odin testowij pusk s mnogokratnoj prowerkoj wsex kompl./sistem ( kak w sluchae zapuska w kosmos Putina na etoj rakete) w 50 mln$ ,awtor schitaet celesoobrtaznim widelit' 200 mln $ na nachalnnuju seriju iz 4 puskow Esli pojdet , to mozno idti dalsche -schag za schagom http://makeyev.ru/main/ ########################## России будет создана тяжелая стратегическая ракета 13:22 16.12.09 Россия, МоскваНЕГА Россия к концу 2016 года планирует создать тяжелую стратегическую ракету на смену "Воеводе" (по классификации НАТО — "Сатана"). Об этом в среду заявил командующий Ракетными войсками стратегического назначения (РВСН) генерал-лейтенант Андрей Швайченко. "Будет осуществляться разработка востребованных новых ракетных комплексов, в том числе на замену тяжелой ракеты РС-20 "Воевода", — сказал Швайченко, слова которого приводит агентство "Интерфакс". ############################### ideja xoroschaja ... 1. Chaxtnogo bazirowanija s startowoj massoj 200 tonn i zabrasiwaemoj 9000 kg 2. Ili chaxtnogo/ z/d/awto/an-124 bazirowanija so stratowoj massoj 100 tonn i zabrasiwaemoj 4500-5000 kg dannij variant lutsche ,esli na kazduju so startowoj massoj po 200 tonn wipustit' 2 so startowoj massoj po 4500 kg http://makeyev.ru/rocspace/nwcoscmp/ http://www.youtube.com/watch?v=PnUiG9Nb1lI http://www.youtube.com/watch?v=i8hVbKtgNZI&feature=related http://www.liveinternet.ru/users/zzyzx_zzyzx/post107971981/ МАЗ-7907 - опытная машина для подвижного грунтового межконтинентального ракетного комплекса "Целина-2". Ее двенадцатиосное шасси обладает гигантскими габаритами: длина - 30 м, ширина - 4,8 м, высота - 4,5 м. К главным техническим особенностям этого монстра можно отнести применение в качестве силовой установки газотурбинного двигателя (специально спроектированного и изготовленного варианта танкового двигателя ГТД-1250 - ГТД-1250А) мощностью 1250 л.с. и довольно сложной, но эффективной электротрансмиссии с 24 мотор-колесами. Шарнирно-сочлененная рама и большой ход подвески колес диаметром почти два метра обеспечивают машине с проектной боевой массой под 200 тонн хорошую проходимость по грунтовым дорогам сложного профиля и максимальную скорость до 40 км/ч. Феноменальную маневренность "двадцатичетырехножке" обеспечивает автоматическая система дифференциального управления поворотом колес. Полноприводной специальный колесный транспортер МАЗ-7904 (12 х 12) с собственной массой 140 тонн, грузоподъемностью 220 тонн и с колесами диаметром 3 метра 18 сантиметров автономной транспортно-пусковой установки ракетного комплекса «Целина». Космодром Байконур, 1984 г. http://ruzhany.narod.ru/rvsn/uragan005.html В конце июня 1984 года в экспериментальном цехе №2 начались приемосдаточные испытания нового облегченного специального шасси МАЗ-7906 подвижного грунтового ракетного комплекса «Целина-2» для межконтинентальной баллистической ракеты 15Ж62 (РТ-23 УТТХ «Молодец»), а уже в июле заводчане приступили к исследовательским обкаточным и пробеговым испытаниям машины в объеме 1000 км. На этом длиннобазном полноприводном восьмиосном шасси высокой проходимости с колесной формулой 16x16 Борис Шапошник применил судовой дизель М-351 мощностью 1500 л.с, две синхронные гидромеханические передачи (4+2), шестнадцать бескамерных шин 1980 х 750-787. Четыре передних оси управляемые, что обеспечило радиус поворота гигантской машины всего в 30 метров. Высота шасси – 3760 мм, длина – 26293 мм, ширина – 4850 мм. Грузоподъемность – 150000 кг, собственная снаряженная масса – 68300 кг. В этом же году из экспериментального цеха выехал еще один опытный экземпляр шасси МАЗ-7906.

Ответов - 202, стр: 1 2 3 4 5 6 7 8 9 10 11 All

milstar: re: Искандер-М http://www.vpk-news.ru/articles/23245#comment-68814 « В правильное время в правильном месте » -Тимур Необходима новая разработка 1.Удлиненное и расширенное (5400 mm) танковое шасси (13- 14 метров) с изменяемым клиренсом (200-500 mm) , низкий профиль - 2- 2.2 метра ,титановый корпус сохраняющее боевую устойчивость при избыточном давлении 3-5 атмосфер (40-70 psi) 2.способное нести 2 ракеты - 3000 км 12 минут или 2 ракеты ПРО 9m82м . Длинна ракет 10.5 -11 метров Диаметр 1.5 метра . 3. Управление с машины сопровождения ( в удалении 3-5+ километров ) и автоматическое

milstar: Носители мира — часть I «Воевода» будет держаться до последнего Виктор Есин Ядерное оружие, как это определено в обновленной Военной доктрине Российской Федерации, остается фактором предотвращения конфликтов как ядерных, так и с применением обычных средств поражения. Поскольку основной вклад в российский потенциал сдерживания вносят стратегические ядерные силы, представляется интересным на основе доступных открытых отечественных и иностранных источников дать оценку их нынешнего состояния. Стратегические ядерные силы (СЯС) России предназначены для осуществления глобального ядерного сдерживания и включают Ракетные войска стратегического назначения (РВСН), морские стратегические ядерные силы (МСЯС), авиационные стратегические ядерные силы (АСЯС) и обеспечивающие их применение системы. Ракетные войска стратегического назначения В силу своего геостратегического положения Советский Союз, а затем и Россия основной упор в формировании структуры СЯС традиционно делали и делают на их наземную составляющую. Ведущая роль РВСН в стратегической ядерной триаде определяется не только их превалированием по количеству развернутых носителей (более 60 процентов) и числу ядерных боезарядов (до двух третей от суммарного количества), но и высочайшей оперативной готовностью к выполнению боевых задач, всепогодностью их решения и устойчивостью управления в условиях возможного противодействия агрессора. “ России приходится решать сложнейшую задачу: выводя из боевого состава носители с выработанным ресурсом, вводить взамен такое количество новых, которое еще и покрыло бы образовавшуюся разницу более чем в 170 единиц ” В состав РВСН входят три ракетные армии (РА): 27-я гвардейская (штаб во Владимире), 31-я (штаб в Оренбурге) и 33-я гвардейская (штаб в Омске). На конец 2014 года в их составе имелось 12 ракетных дивизий, на вооружении которых находилось в общей сложности около 400 пусковых установок (ПУ) ракетных комплексов (РК) шахтного и мобильного базирования. Количество развернутых межконтинентальных баллистических ракет (МБР) – порядка 350 единиц с размещенными на них примерно 1200 ядерными боезарядами (ЯБЗ). До 96 процентов этой ударной группировки содержится в готовности к немедленному применению. Шахтный РК «Воевода» разработан в КБ «Южное» (Днепропетровск). Его развертывание производилось в 1988–1992 годах. МБР РС-20В (Р-36М2, SS-18) – двухступенчатая жидкостная ракета со стартовой массой 211,1 тонны (тяжелого класса), может нести до 10 ЯБЗ (существует также вариант моноблочной ракеты), дальность стрельбы – до 11 тысяч километров, при оснащении моноблочной головной частью – до 16 тысяч километров. Производство осуществлялось на Южном машиностроительном заводе в Днепропетровске. Первоначальный гарантийный срок эксплуатации РС-20В – 15 лет. В настоящее время осуществляется комплекс мероприятий по ее сохранению в группировке РВСН до 2022 года. С лета 2014-го КБ «Южное» и другие украинские предприятия выведены из кооперации, обеспечивающей техподдержку РК «Воевода». Ныне головным предприятием является Государственный ракетный центр имени академика Макеева (Миасс, Челябинская область). Шахтный РК «Стилет» разработан в Научно-производственном объединении машиностроения (Реутов, Московская область). Его развертывание производилось в 1979–1984 годах. МБР РС-18 (УР-100Н УТТХ, SS-19) – двухступенчатая жидкостная ракета со стартовой массой 105,6 тонны, может нести до шести ЯБЗ, дальность стрельбы – до 10 тысяч километров. Производство осуществлялось на Машиностроительном заводе имени Хруничева (Москва). Первоначальный гарантийный срок эксплуатации РС-18 составлял 10 лет. В настоящее время он продлен до 35 лет. Комплекс мероприятий по поддержанию РК «Стилет» в технической готовности позволит, как предполагается, сохранить этот комплекс в группировке РВСН до 2019 года. Носители мира — часть I Подвижный грунтовый РК «Тополь» разработан в Московском институте теплотехники. Его развертывание производилось в 1985–1992 годах. МБР РС-12М (SS-25) – трехступенчатая твердотопливная ракета со стартовой массой 45 тонн, несет один ЯБЗ, дальность стрельбы – до 10 500 километров. Производство осуществлялось на Воткинском машиностроительном заводе (Удмуртия). Первоначальный гарантийный срок эксплуатации РС-12М – 10 лет. В настоящее время он продлен до 25 лет. Проводятся мероприятия по его увеличению еще на два года, что позволит сохранить РК «Тополь» в группировке РВСН до 2019-го. Шахтный РК «Тополь-М» также разработан в Московском институте теплотехники. Его развертывание производилось в 1997–2012 годах. МБР РС-12М2 (SS-27) – трехступенчатая твердотопливная ракета со стартовой массой 47,2 тонны, несет один ЯБЗ, дальность стрельбы – до 11 500 километров. Производство ракет осуществлялось на Воткинском машиностроительном заводе. Первоначальный гарантийный срок эксплуатации РС-12М2 составляет 15 лет. В настоящее время развертывание шахтного РК «Тополь-М» прекращено, но проводится комплекс мероприятий по сохранению его в группировке РВСН до конца следующего десятилетия. Подвижный грунтовый РК «Тополь-М» является мобильной модификацией шахтного РК «Тополь-М». В его составе используется модифицированная МБР РС-12М1 с теми же ТТХ, что и у МБР РС-12М2. Развертывание подвижного грунтового РК «Тополь-М», начало которому было положено в 2006 году, также прекращено. Предполагается сохранить этот комплекс в группировке РВСН до начала 30-х годов нынешнего столетия. Носители мира — часть I Московский институт теплотехники разрабатывал и подвижный грунтовый РК «Ярс», развертывание которого началось в 2010 году. МБР РС-24 (SS-29) – трехступенчатая твердотопливная ракета со стартовой массой 46,5 тонны, может нести до шести ЯБЗ, дальность стрельбы – до 10 500 километров. Производство осуществляет Воткинский машиностроительный завод. Первоначальный гарантийный срок эксплуатации РС-24 – 15 лет. Считается, что подвижный грунтовый РК «Ярс» сохранится в группировке РВСН до середины 2030-х. Шахтный РК «Ярс» – стационарная модификация подвижного грунтового РК «Ярс». Его развертывание в Козельской ракетной дивизии началось в 2014 году. Он оснащается той же МБР, что и подвижный грунтовый РК «Ярс». Можно ожидать, что РК «Ярс» сохранится в группировке РВСН до конца 30-х годов нынешнего столетия. Морские стратегические ядерные силы МСЯС формируют бльшую часть потенциала глубокого ответного удара СЯС России, поскольку им априори присуща повышенная живучесть благодаря высокой скрытности действий при нахождении в море. Слабыми сторонами МСЯС, причем не только российских, считаются уязвимость ракетных подводных крейсеров стратегического назначения (РПКСН) при нахождении в пунктах базирования, а также низкая надежность доведения до них приказов централизованного боевого управления в подводном положении. К тому же вследствие произошедшего в 1999–2010 годах значительного ослабления потенциала сил общего назначения Военно-морского флота (ВМФ) России российским РПКСН в океанских просторах присуща существенно меньшая боевая устойчивость, чем аналогичным американским подводным лодкам с баллистическими ракетами (ПЛАРБ). РПКСН, оснащенные корабельным ракетным комплексом (КРК) с баллистическими ракетами подводных лодок (БРПЛ), входят в состав двух российских флотов – Северного и Тихоокеанского (штабы в Североморске Мурманской области и Владивостоке соответственно). Носители мира — часть I По состоянию на конец 2014 года в составе ВМФ России находилось 12 РПКСН четырех типов: два – проекта 667БДР («Кальмар»), шесть – проекта 667БДРМ («Дельфин»), один – проекта 941У («Акула») и три – проекта 955 («Борей»). Все подводные крейсеры проектов 667БДР и 667БДРМ и один проекта 955 («Юрий Долгорукий») имели баллистические ракеты на борту (всего 144 развернутых БРПЛ с размещенными на них более 400 ЯБЗ). Разработку всех РПКСН проводило центральное конструкторское бюро морской техники «Рубин» (Санкт-Петербург), а их строительство осуществляло Северное машиностроительное предприятие (Северодвинск). Два РПКСН проекта 667БДР входят в состав дивизии атомных подводных лодок командования подводными силами Тихоокеанского флота (ТОФ), которая базируется в Вилючинске (бухта Крашенинникова, полуостров Камчатка). Подводные крейсеры этого типа введены в состав ВМФ в 1976–1982 годах (всего построено 14 единиц). Они вооружены КРК Д-9Р с 16 ПУ БРПЛ РСМ-50 (Р-29РКУ, SS-N-18) разработки Конструкторского бюро машиностроения (Миасс, Челябинская область). В настоящее время КБ носит название Государственный ракетный центр имени академика Макеева. БРПЛ РСМ-50 – двухступенчатая жидкостная ракета со стартовой массой 35,3 тонны, может нести до трех ЯБЗ, дальность стрельбы – до 6500 километров. Производство осуществлялось на Красноярском машиностроительном заводе. Планируется, что РПКСН проекта 667БДР в ближайшие несколько лет выведут из боевого состава ТОФа. Шесть РПКСН проекта 667БДРМ входят в состав дивизии атомных подводных лодок командования подводными силами Северного флота (СФ). Это соединение базируется в поселке Гаджиево (бухта Ягельная, Кольский полуостров). РПКСН проекта 667БДРМ введены в состав ВМФ в 1985–1991 годах (всего построено семь единиц). Они вооружены КРК Д-9РМ с 16 ПУ БРПЛ РСМ-54 (Р-29РМУ, SS-N-23) разработки Конструкторского бюро машиностроения. БРПЛ РСМ-54 – трехступенчатая жидкостная ракета со стартовой массой 40,3 тонны, может нести до четырех ЯБЗ, дальность стрельбы – до 8300 километров. Ракеты изготовлялись на Красноярском машиностроительном заводе. В 1999-м возобновлено их производство в модернизированном варианте, известном как «Синева». В 2012 году испытана, а в начале 2014-го принята на вооружение усовершенствованная модификация БРПЛ РСМ-54, получившая название «Лайнер». Эта ракета способна нести до 10 ЯБЗ малой мощности. Информация о ее развертывании на РПКСН проекта 667 БДРМ отсутствует. РПКСН проекта 941 (тяжелого класса) введены в состав ВМФ в 1981–1989 годах (всего построено шесть единиц). Они вооружены КРК Д-19 с 20 ПУ БРПЛ РСМ-52 (Р-39У, SS-N-20) разработки Конструкторского бюро машиностроения. БРПЛ РСМ-52 – трехступенчатая твердотопливная ракета со стартовой массой 90 тонн, способна нести до 10 ЯБЗ на дальность до 8300 километров. Снята с вооружения по истечении срока эксплуатации в 2004 году. К настоящему времени из шести построенных РПКСН проекта 941 пять выведены из состава ВМФ. Исключение составляет головной РПКСН «Дмитрий Донской», который переоборудован для использования в качестве испытательной платформы для отработки БРПЛ РСМ-56 («Булава»). Он известен как подводный крейсер проекта 941У и приписан к Северодвинской военно-морской базе. Три РПКСН проекта 955, носящие названия «Юрий Долгорукий», «Александр Невский» и «Владимир Мономах», введены в состав ВМФ в 2013–2014 годах. Подводный крейсер «Юрий Долгорукий» входит в состав СФ, а подводные крейсеры «Александр Невский» и «Владимир Мономах» приписаны к ТОФу, но временно базируются в поселке Гаджиево. Их межфлотский переход к месту постоянного базирования в Вилючинске спланирован на лето-осень этого года. Крейсеры вооружены КРК с 16 ПУ БРПЛ РСМ-56 (Р-30, SS-NX-32) разработки Московского института теплотехники. БРПЛ РСМ-56 – трехступенчатая твердотопливная ракета со стартовой массой 36,8 тонны, может нести от 6 до 10 ЯБЗ, дальность стрельбы при оснащении шестью боеголовками – 9300 километров, десятью – 8000 километров. Производство осуществляется на Воткинском машиностроительном заводе. В настоящее время в состав сил постоянной готовности входит только подводный крейсер «Юрий Долгорукий». С учетом того что все РПКСН проекта 667БДРМ прошли в недавнем прошлом восстановительный капитальный ремонт с перевооружением на новые БРПЛ «Синева» и что в состав ВМФ уже введены три РПКСН проекта 955, на сегодня оснащенность МСЯС современными образцами вооружения оценивается на уровне 56 процентов. Авиационные стратегические ядерные силы АСЯС по праву считаются гибким средством как глобального, так и регионального ядерного сдерживания. Такими возможностями не обладают никакие другие компоненты стратегической ядерной триады. Слабой стороной российских АСЯС является ограниченность аэродромов базирования тяжелых бомбардировщиков (ТБ) и самолетов-заправщиков. По состоянию на конец 2014 года в боевом составе стратегической авиации России насчитывалось 66 ТБ: 11 бомбардировщиков Ту-160 и 55 Ту-59МС. Все они, как и полк самолетов-заправщиков Ил-78М, входят в состав командования дальней авиации Военно-воздушных сил (ВВС). Местами постоянного базирования ТБ являются авиабазы в городе Энгельсе Саратовской области и поселке Украинка Амурской области, а самолетов-заправщиков – авиабаза в Рязани. Носители мира — часть I В Энгельсе дислоцируются полк ТБ Ту-160 и ТБ Ту-95МС, а в Украинке – два полка ТБ Ту-95МС. На этих базах складировано 200–300 ядерных крылатых ракет воздушного базирования (КРВБ) большой дальности, предназначенных для установки на ТБ. Общий запас ядерных КРВБ для ТБ с учетом хранящихся на арсеналах 12-го Главного управления Минобороны России – около 800 единиц. Разработка всех ТБ проведена Конструкторским бюро имени Андрея Туполева. Серийное производство ТБ Ту-95МС осуществлялось в 1984–1991 годах на авиационном заводе в Куйбышеве (в настоящее время «Авиакор»). Этот бомбардировщик представляет собой свободнонесущий моноплан со среднерасположенным стреловидным крылом, стреловидным оперением и трехстоечным шасси с носовым колесом. Максимальная взлетная масса – 185 тонн. Силовая установка состоит из четырех турбовинтовых двигателей НК-12МП (каждый мощностью 15 000 л. с.). Максимальная скорость полета – 910 километров в час, крейсерская – 800 километров в час. Практический потолок полета – 12 000 метров. Экипаж – семь человек. Ударное вооружение бомбардировщика в варианте Ту-95МС6 состоит из шести ядерных КРВБ Х-55, которые размещаются в бомбоотсеке на многопозиционной катапультовой установке (МКУ). Вариант бомбардировщика, обозначаемый как Ту-95МС16, способен дополнительно нести до 10 КРВБ Х-55, размещаемых на пилонах под крыльями самолета. Но при этом его дальность полета значительно уменьшается – с 10 500 до 6500 километров без дозаправки в воздухе. Серийное производство ТБ Ту-160 осуществлялось в 1984–1992 годах на авиационном заводе в Казани (в настоящее время Казанское авиационное производственное объединение имени Горбунова). В 1999-м возобновлено штучное производство этого бомбардировщика (выпущено два самолета в 2000 и 2008 годах). ТБ Ту-160 представляет собой самолет, планер которого выполнен по нормальной аэродинамической схеме с интегральной компоновкой центроплана. Крыло изменяемой геометрии обеспечивает полет по различным профилям, в том числе на малых высотах в режиме следования рельефу местности. Шасси имеет управляемую двухколесную носовую и две шестиколесные основные стойки. Максимальная взлетная масса – 275 тонн. Силовая установка состоит из четырех двухконтурных турбореактивных двигателей НК-32 (каждый мощностью 25 000 л. с.), которые размещены в двух мотогондолах под неподвижными частями крыльев, а также имеется бортовая вспомогательная силовая установка. Максимальная скорость полета – 2200 километров в час, крейсерская – 2000 километров в час. Практический потолок полета – 15 000 километров. Дальность полета без дозаправки в воздухе с максимальной боевой нагрузкой – 10 500 километров, с нормальной боевой нагрузкой – до 14 000 километров. Экипаж – четыре человека. Ударное вооружение включает 12 ядерных КРВБ Х-55СМ, которые размещаются на двух МКУ по шесть единиц в двух внутрифюзеляжных бомбоотсеках. КРВБ Х-55 (РКВ-500А, AS-15А) разработана машиностроительным конструкторским бюро «Радуга» (Дубна, Московская область). Максимальная дальность полета до цели – 3500 километров. Производство ракет с 1983 года осуществлял Дубнинский машиностроительный завод. Разработан также вариант ракеты Х-55СМ (РКВ-500Б, AS-15B), обладающей повышенной дальностью полета за счет установки дополнительных топливных баков. В 1999 году проведены испытания модернизированного варианта ракеты, ставшего известным как Х-555 (представляет собой неядерную КРВБ, которой могут оснащаться ТБ Ту-160). По договору СНВ-3 В настоящее время строительство и развитие СЯС России осуществляется с учетом тех ограничений, которые наложены российско-американским Договором СНВ-3 2010 года, вступившим в силу 5 февраля 2011-го. Согласно статье II этого договора каждая из сторон сокращает свои межконтинентальные баллистические ракеты и пусковые установки, баллистические ракеты подводных лодок и их пусковые установки, тяжелые бомбардировщики (ТБ), боезаряды МБР, боезаряды БРПЛ и ядерные вооружения ТБ таким образом, чтобы через семь лет после вступления в силу договора и в дальнейшем до истечения срока его действия суммарные количества не превышали 700 единиц для развернутых МБР, БРПЛ и ТБ; 1550 единиц для боезарядов на развернутых МБР, БРПЛ и ядерных боезарядов, засчитываемых за развернутыми ТБ; 800 единиц для развернутых и неразвернутых ПУ МБР, ПУ БРПЛ и ТБ. Согласно последнему обмену уведомлениями (на 1 сентября 2014 года) суммарно у России имелось 911 единиц развернутых и неразвернутых стратегических наступательных вооружений, у США – 912. Из них развернутых носителей: у России – 528 единиц с засчитываемыми за ними 1643 боезарядами, у США – 784 единицы с засчитываемыми за ними 1642 боезарядами. Такое соотношение свидетельствует о том, что в настоящее время СЯС России сохраняют баланс по боевым возможностям в отношении стратегических наступательных сил США. Вместе с тем для того, чтобы соответствовать к 5 февраля 2018 года планке в 700 единиц развернутых носителей, России приходится решать сложнейшую двуединую задачу: выводя из боевого состава СЯС носители с выработанным эксплуатационным ресурсом, вводить взамен такое количество новых, которое не только компенсировало бы эти потери, но и покрыло образовавшуюся на 1 сентября 2014 года разницу более чем в 170 единиц от установленного Договором СНВ-3 уровня для развернутых носителей. США существенно проще выполнять условия Договора СНВ-3: им предстоит сократить излишнее количество носителей и снять с оставшихся развернутых носителей избыточное число боезарядов. Окончание следует.

milstar: ракета "Булава-30" - базовый вариант БРПЛ разработки МИТ; - ракета "Булава-45" / "Булава-47" - тяжелая модификация с боевыми блоками с активными радиолокационными головками самонаведения (РЛ ГСН). Разработка Государственного ракетного центра им. Макеева. Масса - 45 или 47 тонн; ПРАЙМ-ТАСС


milstar: Что должны означать слова: «наступательная сила»? Все виды оружия, рассматриваемые в их абсолютной; ценности, обладают наступательной силой — от револьвера до дредноута, от кинжала до авиационной бомбы. Дуэ #### При эскизном проектировании ракеты необходимо учитывать возможность адаптации видами и родами вооруженных сил ... необходимо учитывать возможность адаптации в семье видами и родами вооруженных сил -ФГУП Рубин ,КБ Туполева Пример Ракета для бомболюков Tu-160 -моноблок 300-500 килотонн на 10 000 км явно может быть адаптирована для грунтового комплекса Ту-160 Вооружение в 2 грузовых отсеках. Отсеки имеют длину 11,28 м и ширину 1,92 м. П-700 «Гранит» (8*24 ...949 plark) ,Длина, м 8, Диаметр, м -0.85 Стартовый вес, кг 7000 П-1000 «Вулкан» (3*16 ... 1164 Устинов )11.7 m*0.88 m ,8000 кг Антей 2500/9m82m 2* TPK 10.5m *1.5m , ....... баллистическая "Искандер-К", Ракета 9М723 7.2 м * 0.95 m , 3800 kg баллистическая 2 ступени Pershing-2 10.6 м * 1.2 m 7400 kg

milstar: Возможная модификация Дивизиона С-300в Замена боезапаса 96 9M82M на 32 ракеты с дальностью 1850 км за 7 минут по настильной траектории по габаритам сопоставимыми с 9M82M , и 64 9M82M Увеличение апертур РЛС Создание нового гусеничного плавающего шасси из титана , ############################################## устойчивого к избыточному давлению 3-5 кг/кв.сантиметр (1100 -1500 метров от эпицентра взрыва 0.5 мегатонн) ,изменяемым клиренсом 0- 800 миллиметров возможен беспилотной вариант в комбинации с управлением с другой машины на удалении 5-10 километров габаритами 11 метров * 6 метров * 2 метра с газотурбинных двигателем под боевую нагрузку 1. ракеты 9м82м 2. ракеты средней дальности ,аналогичные Pershing-2 3. РЛС X,S,L -диапазона с размерами апертуры большими, чем у 9К81М С-300ВМ "АТНЕЙ-2500" 4.Та́нкер 5.Командно-штабная машина ----------------------------------------------------- 1.Философское обоснование 2.Военно-теоретическое обоснование 3.От реализованных в военно-морском флоте многоцелевых крейсеров к реализации подобного проекта на суше на базе 9К81М С-300ВМ с более высокой боевой эффективностью и сопоставимой ценой 4.Данные по проектам имеющим отношение к предлагаемому в данном е-mail VLS 57 DDG-1000 Zumwalt, ASBM Dong Feng-21D , 9К81М С-300ВМ ,Pershing-2 ,сдвоенная THAAD 5. Экономические возможности России -Суммарный ВВП по ППС за 8 лет -20 000 млрд долл = 20 триллионов долл 6. Воззрения на компоновку шасси с газотурбинных двигателем 7. способ защиты бронетанковой техники с системой подрессоривания от ударной волны ядерного взрыва ################ 1.1." Война — отец всех вещей, отец всего... " « Всё течёт и движется, и ничего не пребывает » - Гераклит Эфесский ------- 1.2." ...все рождается из воды; все возникает из воды и в неё превращается. Начало элементов, сущих вещей — вода; начало и конец Вселенной — вода. " Фале́с из Милета Будучи военным инженером на службе у царя Лидии Крёза, Фалес, чтобы облегчить переправу войска, пустил реку Галис по новому руслу. Неподалеку от г. Мител он спроектировал плотину и водоотводный канал и сам руководил их постройкой. Это сооружение значительно понизило уровень воды в Галисе и сделало возможной переправу войск. 1.3 Исторический пример для главного конструктора --------------------------------------------------------------- ...Когда прототип ракеты улетел ,генерал Люфтваффе подошел к Вернеру фон Брауну и спросил -" ...так сколько вам надо денег ? " -------------------- 2.1. ...Что должны означать слова: «наступательная сила»? Все виды оружия, рассматриваемые в их абсолютной; ценности, обладают наступательной силой — от револьвера до дредноута, от кинжала до авиационной бомбы. ...Выбор объектов (целей) является самой трудной частью ведения воздушной войны. ...При этом надо избегать жесткого шаблона и стремиться к тому, что Дуэ называет «гибкостью» в выборе объектов ...Самыми первыми объектами воздушной армии должны быть неподвижные и постоянные объекты Вотье. Военная доктрина генерала Дуэ. ---------------------- 2.2. Глава II. Вероятная форма будущей войны ------------------------ «Мы можем сразу же сказать следующее: 1. Будущая война вновь вовлечет целые страны со всеми их ресурсами, не исключая ни одного. 2. Победа улыбнется той стране, которой удастся сломить материальное и моральное сопротивление противника ранее{42}, чем последнему удастся сделать то же по отношению к ней. 3. Вооруженные силы предстанут тем более подготовленными встретить будущую войну, чем больше будет приближение, с которым будет дан ответ на вопрос: «Что представит собой будущая война?», и с чем большим приближением к действительным потребностям будущей войны будут организованы вооруженные силы. 4. В отношении войны на суше, рассматриваемой отдельно{43}, можно сказать, что она будет иметь позиционный характер, подобный минувшей войне, ибо причина, определившая тогда этот характер, остается в силе и на сегодняшний день, и даже еще усилилась и продолжает усиливаться... 5. Война на море, рассматриваемая отдельно{44}, будет иметь характер, аналогичный минувшей войне, учитывая, [46] что, помимо исключительных случаев, т. е. решительного превосходства с самого начала войны над неприятельским флотом, необходимо будет прежде всего решить исход борьбы на море. ...Победитель в войне на море будет обладать способностью прервать морские сообщения противника с помощью надводных средств, в то время как побежденный будет вынужден ограничить свои действия против неприятельских сообщений действиями подводных лодок. Победитель в войне на море будет вынужден защищать свои сообщения от подводной опасности. Таким образом, в отношении войны на суше и войны на море, рассматриваемых отдельно{45}, поскольку ни одна из причин, определивших их характер в минувшую войну, не исчезла и не изменилась существенным образом..., можно логически сделать вывод, что они будут иметь характер, подобный характеру минувшей войны, ибо одни и те же причины вызывают одни и те же следствия» (апрель 1928 г.){46}. генерал Дуэ (сентябрь 1928 г.). ----- 2.3.ВООРУЖЕННАЯ БОРЬБА БУДУЩЕГО. -------------------------------- Некоторые характерные черты ее содержания Полковник Виктор ГОРБУНОВ, начальник направления Центра военно-стратегических исследований ГШ ВС РФ; генерал-лейтенант в отставке Сергей БОГДАНОВ, главный научный сотрудник Центра военно-стратегических исследований ГШ ВС РФ, доктор военных наук, профессор. Стратегическое содержание: ------ стратегические цели и задачи вооруженных сил в войне; возможные условия и способы развязывания военных действий; применяемое оружие (обычное, высокоточное, ядерное); размах военных действий (масштаб, напряженность, интенсивность, продолжительность); способы и формы военных действий; возможная периодизация войны и содержание основных ее периодов; особенности военных действий; последствия военных действий, в том числе применения ядерного оружия; порядок прекращения войны. http://www.coldwar.ru/rvo/012009/voorujennaja-borba-buduschego.php --------------------------------------------------- 3. От реализованных в военно-морском флоте многоцелевых крейсеров к реализации подобного проекта на суше на базе 9К81М С-300ВМ с более высокой боевой эффективностью и сопоставимой ценой ############# 3a.Экспортная цена поставки неполного дивизиона 9К81М С-300ВМ ------------------------------ из 3 батарей Египту 1 млрд долл - способна наносить удары по воздушным ,морским и наземным целям в пределах 300 километров ( 9M82M ) ------ 3b.Американский Эсминец класса Zumwalt DDG1000 (15000 т) ----------------------------------------- имеет число апертур РЛС и число ракет больших габаритов сопоставимое с 1 дивизионом 9К81М С-300ВМ 80 ракет для контейнера VLS57 8625.84 мм * 853.44 мм стоимость до 3,2 млрд долл. (без НИОКР ) способен решать следующие задачи 1.флот против флота -да 2.флот против берега -да 3.ПВО/ПРО/ -да .... Способность РЛС к дискриминации сложной цели с ЭПР = 0.01 кв.метра на дистанции 700 км в условиях сильных помех -нет Данные передаются от сдвоенной THAAD -2*9.2 кв.метра ,2*100 киловатт средней мощности Возможность для противника средствами технической разведки определить состав боезапаса -затруднена Носитель РСМД - использование зарядов мощностью 1-2 килотонны весом 17-18 килограмм линейная имплозия Pu-239 для для ракеты контейнера VLS57 8625.84 мм * 853.44 мм -да Уязвимость- одно попадание ядерного боевого блока , ЭПР носа -60 кв.метров ----- 3c. Модификация дивизиона 9К81М С-300ВМ шасси из титана --------------------------------- Создание плавающего шасси из титана ( 1000 тонн титана примерно 1 млрд рублей ) габаритами 11 метров * 6 метров * 2 метра с газотурбинных двигателем под боевую нагрузку 1. ракеты 9м82м 2. ракеты средней дальности ,аналогичные Pershing-2 3. РЛС X,S,L -диапазона с размерами апертуры большими, чем у 9К81М С-300ВМ "АТНЕЙ-2500" 4.Та́нкер 5.Командно-штабная машина откроет возможность к модификации дивизиона С-300ВМ . ----------------------------- Данная модификация в составе 80-100 шасси 4 батареи по 12 шасси (48)носителей ракет, каждое по две Гибкая комплектация боезапаса - 32 ракеты средней дальности 64 - ракеты 9м82м либо любой другой вариант ----- 4-6 РЛС X диапазона с площадью апертуры более 20 кв.метров 4-6 РЛС L диапазона с площадью апертуры более 20 кв.метров --- Та́нкер,Командно-штабная машина & способна решать следующие задачи ----------------------------------------------------- 1. Атака неподвижных целей на европейском театре 1850 километров за 7 минут по настильной траектории - да 2. Атака авианосной группы на ту же дистанцию при наличии внешнего целеуказания -да 3.ПВО/ПРО/ -да ----- Способность РЛС к дискриминации сложной цели с = 0.01 кв.метра на дистанции 700 км в условиях сильных помех --да Возможность для противника средствами технической разведки определить состав боезапаса -затруднена Уязвимость- необходимо поразить все 80-100 шасси, которые ------------- a. рассредоточены b. имеют низкую ЭПР ( в сравнении с DDG1000 Zumwalt) c. на марше выглядят одинаково,средствами технической разведки в каких шасси ракеты средней дальности d. сохраняют боеспособность после воздействия избыточного давления 3-5 кг/ кв.сантиметр (1100 -1500 метров от эпицентра взрыва 0.5 мегатонн чтобы гарантировать невозможность атаки цели типа крупные агломерации --------------------------------- последним уцелевшим ----------------- Транспортировка -люки Ан-124 шириной 6.4 метра --------------------------------------------------- 4.Данные по проектам имеющим отношение к предлагаемому в данном е-mail ######################################################### VLS 57 DDG-1000 Zumwalt, ASBM Dong Feng-21D ,сдвоенная THAAD , S-300V ,Pershing-2 ---------------------- 4.1. Эсминец класса Zumwalt --------------------------------------- http://bastion-karpenko.narod.ru/DDG-1000.html VLS MK57 Canistr W*L 28* 283 853.44 mm *8625.84 mm http://www.alternatewars.com/BBOW/Weapons/Mk57_VLS.pdf 4.2. Dong Feng-21D ---------------------------- Противокорабельная баллистическая ракета КНР, возможно, достигла стадии начальной боевой готовности, сообщает Associated Press со ссылкой на командующего Тихоокеанским командованием ВС США адмирала Роберта Уилларда. The latest variant to enter service is the DF-21D, an ASBM (Anti-Ship Ballistic Missile) variant employing a terminally guided MaRV (Manoeuvring Re-entry Vehicle). The MaRV may be equipped with a RADAC system similar to that found on the MGM-31 Pershing II IRBM. http://ausairpower.net/APA-PLA-Ballistic-Missiles.html 4.3. THAAD ---------------------- Эффективная площадь рассеяния в диапазоне Х конический боевой блок = 0.01 квадр .метра THAAD Средняя(1) мощность = 81 киловатт 25344*3.2 ватта коэффициент усиления антенны = 103 000 = 41 db Шумовая температура = 400° K эффективность апертуры антенны = 0.8 площадь антенны = 9.2 m^2 длина импульса = 1 миллисекунда коэффициент заполнения =0.2 PRF = 200 Сигнал/шум обнаружение = 20 Сигнал/шум дискриминация = 100 дальность обнаружение = 870 километров дальность дискриминация =580 километров ----------------------- Сдвоенная THAAD 18.4 m^2,162 киловатт дальность обнаружение = 1460 километров дальность дискриминация =970 километров Данные по THAAD для углов элевации 30 ° и более ,При углах элевации ниже 10° дальность падает в 4-5 раз . Атака в группе , подрыв ядерного блока , заход на цель на фоне вспышки остальными резко повышает шумовую температуру радара http://mostlymissiledefense.com/2012/09/21/ballistic-missile-defense-radar-range-calculations-for-the-antpy-2-x-band-and-nas-proposed-gbx-radars-september-21-2012/ 4.4. NIEMI/Antey S-300V 9K81/9K81-1/9K81M/MK ---------------------------------------------------------------- Self Propelled Air Defence System / SA-12/SA-23 Giant/Gladiator http://ausairpower.net/APA-Giant-Gladiator.html 4.5 Баллистическая ракета средней дальности Pershing-2 (MGM-31C) 10.2*1.02 метра ---------------- http://rbase.new-factoria.ru/missile/wobb/pershing_2/pershing_2.shtml ------------------------------------------------------------ 5. Экономические возможности России -Суммарный ВВП по ППС #################################################### за 8 лет -20 000 млрд долл = 20 триллионов долл Суммарный ВВП по ППС России 2013 CIA -2553 млрд долл World Bank -3460 млрд долл IMF -3558 млрд долл http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP) Стоимость олимпиады в Сочи - 50 млрд $ Стоимость одного комплекса PC-24 «Ярс» -50-80 млн $ -------- 6. Воззрения на компоновку шасси с газотурбинных двигателем ############################## 6.1. Главная задача компоновки заключается в том, чтобы при данном уровне развития науки и техники обеспечить оптимальное сочетание боевых свойств танка, а также определенные значения следующих его параметров: — заданную величину среднего удельного давления гусениц на грунт; — отношение длины опорной поверхности (L) к ширине колеи (В), которое должно создавать условия для хорошей поворотливости; — надлежащее расположение координат центра тяжести по длине и ширине машины; — габариты машины (они должны учитывать предполагаемый основной способ перевозки); — боевой вес (он не должен превышать заданного). Кроме того, должны быть предусмотрены возможности дальнейшего развития машины, использования ее в качестве базовой для создания семейства машин. Танки и танковые войска / Коллектив авторов. Под ред. Маршала бронетанковых войск А. X. Бабаджаняна. — М.: Военное издательство, 1970) --------------------------------------- 6.2.Поэтому как вариант можно «исключить» из длины танка силовое отделение и разместить в надгусеничных объемах корпуса (его поперечное сечение Т-образное) два га-зотурбинных двигателя по 750 л.с. с не-зависимыми осевыми (ради уменьше-ния диаметра) компрессорами. Силовые турбины через понижающие редукто-ры связаны с осевыми бортовыми пла-нетарными коробками передач. Двухпо-точный механизм поворота с гидрообъ-емной передачей связывает оба борта. Через плоские гитары мощность пере-дается от механизма поворота на борто-вые передачи (ведущие колеса). Чтобы обеспечить оптимальное се-чение надгусеничных объемов и улуч-шить эргономические условия для чле-нов экипажа, высота корпуса увеличе-на до 1250 мм. Заметим также, что раз-мещение силовых установок в надгусе-ничных объемах служит дополнитель-ной защитой экипажа и боеприпасов в случае поражения борта. Герой Советского Союза, маршал бронетанковых войск Лосик О.А. Ветеран-танкист Великой Отечественной войны, профессор. В 1969—1987 гг. начальник Военной академии БТВ. Известный военачальник, идеолог развития и при-менения танковых войск. Генерал-майор Брилев О. Н. Доктор техничес-ких наук, профессор, заслуженный деятель на-уки и техники РФ. В 1974—1988 гг. начальник ка-федры танков Военной академии БТВ. Извест-ный специалист в области теории и практики разработки и применения танков. ------------------------- 7.Известный способ защиты бронетанковой техники с системой подрессированнее от ударной волны ядерного взрыва позволяет ----------------------------------------------------- снизить воздействие ударной волны на экипаж и внутреннее оборудование машины, исключить затекание ударной волны в обитаемое отделение, снизить шумовое воздействие на членов экипажа. Однако указанный способ не предусматривает автоматическое уменьшение клиренса машины до прихода ударной волны, который позволит быстро снизить вероятность опрокидывания и повреждения машины, за счет снижения воздействия подъемной силы, действующей на корпус машины, увеличить силу сцепления с грунтом, снизить нагрузку на систему подрессоривания. Задача настоящего изобретения заключается в обеспечении автоматического уменьшения клиренса до минимального значения, --------------------- снижения воздействия подъемной силы, действующей со стороны днища машины, вероятности ее опрокидывания и повреждения при воздействии ударной волны ядерного взрыва. Техническим результатом предложенного изобретения является уменьшение вероятности опрокидывания и повреждения машины за счет снижения высоты центра масс образца вооружения и военной техники относительно поверхности грунта, увеличение силы сцепления с грунтом, снижение нагрузки на систему подрессоривания, уменьшение площади машины (боковой, фронтальной) по отношению к направлению взрыва. Техническим решением предложенного изобретения является передача сигнала на исполнительный механизм, обеспечивающий быстрое снижение клиренса машины в условиях применения ядерного оружия. http://www.findpatent.ru/patent/239/2390719.html

milstar: В 1983 году комплекс с ракетой РСМ-52 был принят на вооружение. В последующем он был модернизирован в части боевого оснащения и придания новых способностей стрельбы на различные дальности с расширением возможностей по обстрелу целей. По оценке и расчетам таких авторитетнейших специалистов в области ракетных вооружений как доктор технических наук, заслуженный деятель науки и техники, профессор Е.Н. Мнев, главный конструктор комплекса А.П. Гребнев и др., ракета этого комплекса обладала уникальной способностью преодолевать ледовую преграду до полутора метров толщиной, что значительно расширяло боевые возможности. Почти 20 лет комплекс находился на вооружении ВМФ, демонстрируя высокую надежность и эффективность. Даже представители американской стороны были поражены этой надежностью, когда в конце 90-х годов присутствовали при ликвидации выслуживших свой срок ракет РСМ-52. В ходе этой операции практически весь боекомплект ракет, предназначенных для ликвидации, строго по графику стартовал с трпк сн. Каждая стартовавшая РСМ-52 четко по программе ликвидировалась в воздухе. Главным конструктором этого замечательного, надежного, с большими потенциальными возможностями ракетного комплекса был талантливейший инженер, замечательный человек А.П. Гребнев. К величайшему сожалению, Главкомат Военно-Морского Флота и в первую очередь оперативное управление Главного штаба ВМФ, не сумели по достоинству оценить эти возможности. В конце 90-х годов они согласились с прекращением работ по дальнейшему развитию этого комплекса, что в конечном итоге привело не только к утрате достигнутого высокого уровня боевых возможностей морских баллистических твердотопливных ракет, но - и к досрочному выводу из боевого состава уникальных тяжелых подводных крейсеров стратегического назначения проекта 941. Контр-адмирал Апанасенко Вячеслав Михайлович, член-корреспондент Российской академии ракетных и артиллерийских наук, Начальник УРАВ ВМФ 1996-1998гг., Начальник штаба вооружения ВМФ 1998-2000 гг. http://guraran.ru/MSYAS_Rol_Glavkomata_VMF.html

milstar: МОСКВА, 15 апреля. /ТАСС/. Серийное производство межконтинентальной баллистической ракеты РС-26, контрольный пуск которой состоялся в середине марта, начнется в конце 2015 - начале 2016 года. Об этом ТАСС сообщил источник в оборонно-промышленном комплексе. "Во второй половине текущего года ракета будет принята на вооружение, ее серийное производство начнется в конце этого - начале следующего года", - сказал собеседник агентства. По его словам, для принятия РС-26 на вооружение не требуется дополнительных пусков. "Но это не означает, что ракета не будет запускаться для отработки вариантов боевого оснащения", - отметил источник. Он пояснил, что боевая часть новой ракеты имеет многовариантное боевое оснащение, максимальное количество боевых блоков - четыре. "Для отработки боевого оснащения пуски будут продолжены в 2016 году", - подчеркнул собеседник агентства. Как отметил источник, по результатам успешного мартовского пуска выяснилось, что "предстоит еще доработать командные пункты дивизионов и полка". "До принятия ракеты на вооружение необходимо довести до ума командные пункты дивизионов и полка, подготовить техническую документацию, затем госкомиссии совместно с разработчиком межконтинентальной баллистической ракеты предстоит подготовить проект указа президента о принятии РС-26 на вооружение", - подчеркнул собеседник агентства. По его словам, первой грунтовые ракетные комплексы с РС-26 получит Иркутская дивизия РВСН. В перспективе они заменят устаревшие комплексы "Тополь". Источник уточнил, что на боевое дежурство новые ракеты поставят в начале 2016 года - ранее планировалось сделать это в 2015-м. Официальным подтверждением этой информации ТАСС пока не располагает

milstar: дополнительная информация ############################################ 1. Зависимость России от одного разработчика ,производителя мобильных комплексов -ошибка 2. Отказ от гусеничных шасси для мобильных комплексов -ошибка не соответствует географическим и климатическим условиям России a.Сеть автомобильных дорог недоразвита в сравнении с Соединенными штатами Америки и Европы b. Железнодорожное базирование не способно обеспечить боевую устойчивость при действии избыточного давления 3-5 килограмма на квадратный сантиметр = 1200-1500 метров от эпицентра взрыва 500 килотонн ( высокий центр тяжести ,большая площадь боковой проекции,высокое отношение длины к ширине) - Основные ТТХ МБР «Миджитмэн» Длина ракеты, м 13,5, Диаметр ракеты, м 1,1-1,25 Стартовая масса, т 16,8 http://pentagonus.ru/publ/19-1-0-1205 По некоторым данным, ТПУ оснащалась механизмом выравнивания грунтовой площадки. В связи с этим она обладала относительно достаточной защищенностью и устойчивостью, выдерживала давление во фронте ударной волны до 2,1 кг/см2. -------------------------------------------------------------------------- Перед конструктором шасси ставится вопрос реализуемо ли инженерно шасси ######################################################################### с требованиями указанными ниже ############################### ширина 6 метров ( грузовые люки Ан-124 -6.4 метра ),длина 11-13 метров , высота при нулевом клиренсе 2-2.5 метра ,из титана, плавающее, ГТД 1500 + электротрансмиссия, внешне одинаковое для средств технической разведки противника ,сохраняющее боевую устойчивость при действии избыточного давления 3-5 килограмма на квадратный сантиметр (изменяемый клиренс,обводы корпуса ,амортизация ракеты внутри корпуса шасси ? &) для нижеуказанные разновидностей боевой нагрузки 1. РЛС со средней мощностью 100 квт , соответственно потребляемая -500 квт электротрансмиссия, Li -Ion высоковольтная батарея ------------------- AN/TPY-2 THAAD http://www.mda.mil/global/images/system/thaad/4._TH_Radar.jpg для сравнения - Средняя мощность РЛС Ирбис 5 кВт при апертуре 900 мм ( 0.636 кв.метра ) Вес 600 килограмм потребляемая мощность 30 кВт http://www.ausairpower.net/APA-Flanker-Radars.html Увеличение площади апертуры в 4 раза увеличивает дальность в 2 раза Увеличение средней мощности в 16 раз увеличивает дальность в 2 раза ( соотвестветственно проблемы -потребляемая мощность и отвод тепла) 2. Адаптированная версия баллистической ракеты для ту-160 ------------------------------------------------------------------------- Вооружение располагается в двух грузовых отсеках: переднем и заднем. Отсеки имеют длину 11,28 м и ширину 1,92 м. http://www.airwar.ru/enc/bomber/tu160.html#LTH габариты по длине хорошо коррелируют с 9M82M ---------------------------------------------------------- Мы считаем, что наиболее полно требованиям сегодняшнего дня отвечает крылатая ракета воздушного базирования с дальностью пуска пять и более тысяч километров». командующий 37-й ВА генерал-лейтенант И.И.Хворов ... баллистическая ракета воздушного базирования ############################################# при данных габаритах бобмоотсеков возможен моноблок 100+ килотонн на дальность 8000+ километров Вес ракеты 15-17 тонн 3. ракеты с-300в4 9M82M -------------------------- Длина,мм - - 9913(10525) Максимальный диаметр,мм -1215(1460) Масса,кг -5800(6000) http://rbase.new-factoria.ru/missile/wobb/c300v/9m83.shtml 4. Командно-штабная машина ,танкер & -------------------------------------------------

milstar: Midgetman Hardened Mobile Launcher https://www.youtube.com/watch?v=SsEvI7dB5Ak

milstar: Серийные поставки МБР «Сармат» начнутся в 2018-2019 годах Разработка тяжелой жидкостной межконтинентальной баллистической ракеты (МБР) «Сармат», которая должна в перспективе заменить ракеты РС-20В «Воевода» (по классификации НАТО КSS-18, «Сатана»), идет успешно, серийные поставки начнутся до 2020 года, сообщил Интерфаксу заместитель министра обороны РФ Юрий Борисов «Запуск в серию планируется до 2020 года, ориентировочно, серийные поставки начнутся в 2018-2019 годах», – сказал замминистра. Он подчеркнул, что «это будет уникальная ракета». Ю.Борисов сообщил, что в 2015 году начнется этап так называемых бросковых испытаний ракеты, когда она выбрасывается из шахты после срабатывания порохового аккумулятора давления и летит без поражения цели. «В этом году у нас по плану «бросковые» испытания», - сказал Ю.Борисов. Ранее Ю.Борисов сообщил, что новая ракета сможет донести до 10 тонн полезной нагрузки в любую точку мира. «Она сможет летать как через Северный, так и через Южный полюс», - добавил замминистра. Ранее сообщалось, что ракеты РС-20В, которые собирались в советское время на заводе «Южмаш» (Днепропетровск, Украина), останутся в составе РВСН до 2022 года, после чего будут сняты с боевого дежурства. Ракеты РС-20В были поставлены на боевое дежурство в конце 1980-х годов. РС-20В остается самой мощной из всех российских МБР. Масса ракеты РС-20В «Воевода» составляет 211 тонн. Она способна нести 10 ядерных боевых блоков по 0,5 мегатонны на расстояние до 11 тыс. км. В свою очередь командующий РВСН генерал-полковник Сергей Каракаев ранее сообщил, что ракета «Сармат», создаваемая ракетным центром имени Макеева (Миасс, Челябинская область), по характеристикам не будет уступать РС-20. По его словам, высокая боевая эффективность создаваемого ракетного комплекса может быть обеспечена за счет придания ему следующих новых свойств: высокая боевая мощь боевого оснащения и боевая готовность комплекса; обеспечение возможности реализации широкого спектра траекторий и направлений полета ракеты; значительные возможности комплексного применения новых специализированных средств и способов преодоления противоракетной обороны.

milstar: Boeing Small ICBM Hard Mobile Launcher https://www.youtube.com/watch?v=uNomNauC78E https://www.youtube.com/watch?v=YXoZyCVFIPA https://www.youtube.com/watch?v=T80V5rbfZ6o ----------------------------------------------------------- исходя из габаритов танка Абрамс L- длина опорной поверхности — 4575 мм. B - ширина колеи танка (расстояние между центрами гусениц в поперечной плоскости) -2850 мм. L/B = 1.6081 Ширина гусениц — 635 мм длина корпуса -7930 мм ширина корпуса -3650 мм ширина корпуса по гусеницам -3480 мм семь опорных катков предлагаемое шасси из титана шириной 6 метров (ширина грузового отсека АН-124 -6.4 метра) может иметь L- длина опорной поверхности — 8355 мм. B - ширина колеи танка (расстояние между центрами гусениц в поперечной плоскости) -5195 мм. L/B = 1.6081 Ширина гусениц — 635 мм длина корпуса -14481 мм ширина корпуса -6000 мм ширина корпуса по гусеницам -5830 мм 13 опорных катков

milstar: Виктор Есин отметил, что «шахтные ракетные комплексы благодаря своей высочайшей готовности к запуску ракет вносят основной вклад, до 70%, в потенциал ответно-встречного удара стратегических ядерных сил России. «Но их живучесть в случае нанесения агрессором упреждающего удара невысокая», – добавил эксперт. http://nvo.ng.ru/nvoevents/2015-07-31/2_rvsn.html Подвижные грунтовые ракетные комплексы (ПГРК) «Тополь», «Тополь-М» и «Ярс» обладают комплексом боевых качеств, обеспечивающих их особое предназначение в ударной группировке Ракетных войск стратегического назначения (РВСН), сказал Интерфаксу экс-начальник Главного штаба РВСН генерал-полковник Виктор Есин. «Благодаря скрытности их действия и способности к рассредоточению на огромной территории вкупе с применением специальных мер по маскировке и противодействию средствам космической разведки ПГРК обладают высокой живучестью и вносят весомый вклад в потенциал ответного удара стратегических ядерных сил России», – сказал генерал. По его словам, этот вклад «сопоставим с ракетными подводными крейсерами стратегического назначения».

milstar: Рэм Никифорович Канин, Независимое военное обозрение, 28 августа 2012 Дилемма морского ракетостроения Вопрос о типе топлива остается открытым Рэм Никифорович Канин, ведущий научный сотрудник Государственного ракетного центра имени академика В.П.Макеева, кандидат технических наук. Одной из важных проблем развития боевой и прежде всего стратегической ракетной техники в прошлом веке и в настоящее время был и остается вопрос о типе применяемого топлива: твердое или жидкое? Этот вопрос был рассмотрен на примерах морского ракетостроения на Международной научно-технической конференции в Абхазии, одним из организаторов которой является Федеральное космическое агентство. Применение того или иного топлива следует рассматривать с различных точек зрения: исторический и сравнительный подходы, боевые свойства и эксплуатационные качества; затраты на разработку, базирование, развертывание, эксплуатацию, утилизацию; множество внутренних и внешних, военных и политических, финансовых и доктринальных факторов или ограничений; уровни развития науки, технологий, производства - это далеко не полный перечень составляющих. Все они важны для выявления, исследования и выработки рекомендаций о типе топлива. Все "топливные" направления для стратегического ракетостроения были сформированы и первоначально реализованы отцом российской космонавтики Сергеем Королевым. Боевые ракеты, им созданные, включают жидкостные ракеты на низкокипящем (Р-1, Р-2, Р-5, Р-7, Р-9) и высококипящем (Р-11) жидких топливах, а также твердом смесевом топливе РТ-2. Можно вспомнить и аванпроекты ОКБ-1 - ракеты Р-12 и Р-13, последующую разработку которых вели в Днепропетровске (ОКБ-586) и Златоусте (СКБ-385). КОНКУРЕНЦИЯ В МОРСКОМ РАКЕТОСТРОЕНИИ При создании отечественных морских ракет конкуренция между сторонниками твердых и жидких топлив происходила постоянно. В ее основе лежали два главенствующих фактора: во-первых, впечатляющие успехи твердотопливной ракетной техники в Америке; во-вторых, прогнозируемое улучшение эксплуатационных свойств стратегических баллистических ракет на твердом топливе в сравнении с первыми отечественными жидкостными ракетами. Можно также говорить и о третьем факторе - лоббировании. Оно оказывало существенное влияние на процесс конкуренции, но имело в меньшей степени техническую, а в большей степени личностную подоплеку. Можно выделить несколько этапов конкуренции при развитии твердотопливного и жидкостного морского ракетостроения. На этапе создания морских ракетных комплексов первого поколения в 1958-1961 годах реализовалась параллельная разработка жидкостного комплекса Д-4 (начатая Михаилом Янгелем работа по этому комплексу в 1959 году была передана в КБ машиностроения Виктору Макееву) и твердотопливного Д-6 (главный конструктор КБ "Арсенал" Петр Тюрин). Результат был неудовлетворительным и для жидкостного (Д-4), и для твердотопливного (Д-6) вариантов, если сопоставлять по боевым свойствам с американскими твердотопливными ракетами ("Поларис А-1", "Поларис А-2"), а также по размещению на проектируемом атомном подводном ракетоносце проекта 667. Кроме того, для комплекса Д-6 в сравнении с Д-4 неудовлетворительными были возможные сроки реализации при использовании смесевого топлива, а при использовании баллиститного топлива - и сроки, и характеристики. На этапе создания ракетных комплексов второго поколения можно выделить два подэтапа. На первом, начатом Сергеем Королевым в 1961 году, значительную роль в "конкурентности" сыграли: во-первых, наличие двух проектов атомных подводных лодок - "большой" (667А) и малогабаритной (705Б); во-вторых, параллельная разработка комплексов Д-7 (с твердотопливной ракетой РТ-15М Виктора Макеева) и Д-5 (с жидкостной Р-27 также Виктора Макеева), соответственно для "большой" и "малогабаритной" лодок. Безусловный выигрыш одержало жидкостное направление прежде всего по совокупности характеристик (особенно если учесть начало проектной (1963 год) и опытно-конструкторской разработки (1964 год) межконтинентальной жидкостной ракеты Р-29 Виктора Макеева. Началом второго подэтапа следует считать разработку комплекса Д-11 (ракета Р-31 с разделяющейся головной частью Петра Тюрина). В 1980 году разработка была завершена. Опытная эксплуатация комплекса (12 ракет) продолжалась на одной лодке Северного флота до 1990 года. Результатом стал проигрыш комплексу Д-9Р (его разработка началась в 1973-м и завершилась в 1977 году) и ракете Р-29Р межконтинентальной дальности стрельбы и с разделяющимися головными частями. Что касается сопоставления твердотопливных ракет второго поколения (Д-7 Виктора Макеева и Д-11 Петра Тюрина) с зарубежными аналогами ("Поларис А-3" с моноблоком, на вооружении с 1964 года и "Посейдон С-3" с разделяющейся головной частью, на вооружении с 1971 года), то здесь превосходство американских ракет было очевидным по всем параметрам. Этап комплексов третьего поколения начался с постановкой на вооружение отечественной твердотопливной морской ракеты Р-39 комплекса Д-19 в 1983 году. Тактико-технические характеристики этой ракеты превосходили предшествующие аналоги как отечественной жидкостной типа Р-29Р (1977 год), так и американской твердотопливной "Трайдент-1" (1979 год). У нашей ракеты были больше дальность стрельбы и количество боезарядов одинакового класса мощности, повышенная или сопоставимая точность стрельбы и так далее. Однако улучшение тактико-технических характеристик было достигнуто за счет утяжеления ракеты в два с половиной раза и соответствующего увеличения ее габаритов, а также путем создания подводной лодки проекта 941 рекордного водоизмещения, новой системы базирования и так далее, то есть затратными (экстенсивными), а не инновационными (интенсивными) методами. Следует отметить, что в относительно короткий срок после создания комплекса Д-19 появились ракеты жидкостная типа Р-29РМ (1986 год) и твердотопливная "Трайдент-2" (1990 год), которые превосходили ракеты Р-39 по боевым свойствам, но обладали меньшими габаритами и стартовым весом. Таким образом, с 1960-го по 1990 год отечественные твердотопливные морские баллистические ракеты не смогли достичь тактико-технических характеристик, сопоставимых ни с нашими жидкостными, ни с американскими твердотопливными. Тем не менее переход отечественного морского ракетостроения на твердотопливное направление был утвержден в 1980-е годы. Реализация перехода дала сбой в 1990-е годы (спорное прекращение разработки комплекса Д-19УТТХ), и существует по настоящее время ("Булава-30"). При этом следует отметить, что заявленные и ожидаемые характеристики ракеты "Булава-30" заметно хуже американского аналога "Трайдент-1", поставленного на вооружение более тридцати лет назад (в 1979 году), а именно: шесть, а не восемь боевых блоков при прочих близких или равных характеристиках, определяющих боевую эффективность и эксплуатационные качества. Кроме того, "Булава-30" уступает: по срокам китайской морской твердотопливной ракете с разделяющейся головной частью "Цзюйлан-2", которая уже развернута на двух подводных лодках "Дацынгуй"; по срокам и характеристикам французской ракете М-51, а также отечественной ракете Р-29РМУ2 "Синева", базовый вариант которой с десятью боевыми блоками был принят на вооружение в 1986 году. ЖИДКОСТНЫЕ РАКЕТЫ Значительный скачок в улучшении эксплуатационных свойств был реализован в 1960-х годах на морских жидкостных ракетах второго поколения. Во-первых, за счет заводской заправки ракет топливом и последующей ампулизации сваркой заправочно-дренажных клапанов. Тем самым были исключены: штатная заправка ракет на берегу; заправка емкостей подводных лодок с берега; заправка ракет из емкостей подводной лодки; а также оказались лишними емкости для хранения ракетного топлива на базах. Во-вторых, за счет освоения транспортировки любыми видами транспорта заправленных ракет от завода-изготовителя до ракетной базы и их погрузки в шахту подводной лодки. Следующий этап улучшения эксплуатационных характеристик жидкостных ракет предлагалось реализовать в 1970-х годах, а технические решения были разработаны в аванпроекте комплекса Д-9М (декабрь 1970 года). Главными из "эксплуатационных" решений были: отказ от предстартового и предварительного наддува баков ракеты системами подводной лодки с переходом на автономный наддув баков; исключение заполнения кольцевого зазора ракетной шахты водой из цистерн подводной лодки. Но это направление для ракет третьего поколения не было принято. В июне 1971 года была начата разработка твердотопливных ракет Р-31 комплекса Д-11 главного конструктора Петра Тюрина (опытно-конструкторская разработка) и Р-39 комплекса Д-19 генерального конструктора Виктора Макеева (аванпроект). Эксплуатация ракет на подводной лодке улучшилась, но за это пришлось заплатить: для ракеты Р-31 - значительным ухудшением тактико-технических характеристик; для ракеты Р-39 - затратами на обеспечение наземной эксплуатации как ракет, так и подводных лодок, что потребовало создания новых средств берегового базирования, а также повышения грузоподъемности средств погрузки до 125 тонн. Кроме того, разработка ракет Р-31 и Р-39 вышла за установленные заданием и необходимые с точки зрения поддержания стратегического сдерживания сроки. В этой связи была начата страхующая разработка жидкостной межконтинентальной ракеты Р-29Р с разделяющейся головной частью. Работа была выполнена в рекордно короткие сроки - за 4,5 года от начала до завершения по постановлениям правительства. Однако такие сроки исключили возможность улучшить эксплуатацию ракет на подводной лодке, которая сохранилась на уровне ракет второго поколения. В настоящее время известны и частично реализованы технические решения, которые могут обеспечить кардинальное улучшение эксплуатационных свойств жидкостных морских ракет. Главными из них являются: во-первых, применение предстартового наддува ракет автономной системой, размещаемой на ракете и базирующейся на дозированном впрыске компонента топлива в разноименный бак (окислитель в горючее и наоборот); во-вторых, реализация "сухого" способа старта из незатопленной ракетной шахты, герметизируемой разрушаемой при старте мембраной, аналогичного способу старта твердотопливных ракет; при этом выход ракеты из шахты обеспечивается маршевым двигателем первой ступени, работающим первые секунды в газогенераторном режиме. Такие решения практически могли бы уравнять жидкостные и твердотопливные ракеты по условиям размещения, эксплуатации и старта с подводной лодки. РЕЗУЛЬТАТЫ ЭКСПЛУАТАЦИИ Опыт эксплуатации морских ракет в условиях базирования на Северном и Тихоокеанском флотах показывает, что в процессе совершенствования ракетных комплексов и оснащенности мест базирования, а также технического (гарантийного и авторского) надзора за эксплуатацией морских ракет разница в особенностях эксплуатации жидкостных и твердотопливных неуклонно сокращалась. С точки зрения условий и обеспечения хранения для современных ракет можно отметить: во-первых, для твердотопливных требуется более узкий температурный диапазон; во-вторых, для жидкостных ракет - традиционное наличие на подводных лодках и технических ракетных базах систем и агрегатов по приведению их в безопасное состояние в случае разгерметизации баков (единственное задействование таких систем подводной лодки при эксплуатации ракет третьего поколения произошло 28 лет назад). При реализации "сухого" способа старта (твердотопливная ракета) было сокращено число водяных систем подводной лодки, однако увеличился состав воздушных систем, что в конечном итоге не изменило показатели надежности комплекса и соответственно число неисправностей в системах повседневного и предстартового обслуживания. Отсутствие связей полости шахты с забортным пространством и устройств системы орошения повысило безопасность повседневного хранения твердотопливных ракет на лодке. Однако появилась необходимость введения в состав базового оборудования устройств осушения шахт при подготовке к погрузке после старта ракет. Возникла необходимость нейтрализации осушаемой воды и проведения работ по очистке и восстановлению лакокрасочного покрытия шахт. На качество береговой эксплуатации ракет в местах базирования повлиял выбор способа транспортировки. Для эксплуатации ракет Р-39 были применены агрегаты на железнодорожном ходу (вследствие большого веса ракеты). Это исключило инциденты, связанные с опрокидыванием транспортных агрегатов (на автомобильном ходу) с ракетами при их внутрибазовой транспортировке. Техническое состояние путей и самих агрегатов поддерживалось на основании требований Министерства путей сообщения, а траектории движения агрегатов с ракетами определялись железнодорожными путями. Однако реализация такой транспортировки потребовала строительства железной дороги в условиях гористой тундры. АВАРИЙНОСТЬ Эксплуатация современных межконтинентальных морских ракет показывает, что их аварийность в основном зависит от качества подготовки личного состава, а также конструктивных особенностей систем ракетного комплекса и самой ракеты, а не типа топлива. Так, например, в процессе эксплуатации в интересах повышения безопасности и снижения влияния субъективного фактора на комплексе Д-9РМ и его модернизированных вариантах была реализована совокупность мероприятий, которые обеспечили безаварийную эксплуатацию. В результате количество аварийных ситуаций снижалось. Для комплексов с межконтинентальными ракетами в абсолютных цифрах оно составило: у Д-9 - 72, у Д-9Р - 25, у Д-19 - 16, у Д-9РМ - 7. Если учесть (в первом приближении) количество эксплуатируемых ракет и разделить приведенные цифры аварийности на количество развернутых ракетных шахт, то получим следующие значения относительной аварийности: Д-9 - 0,26, Д-9Р - 0,11, Д-19 - 0,13, у Д-9РМ - 0,06-0,07. И относительные, и абсолютные цифры аварийности не свидетельствуют в пользу твердотопливных ракет. За последние 25 лет аварий с морскими ракетами не было, включая период интенсивной эксплуатации современных жидкостных ракет типа Р-29Р и Р-29РМ. Авария, которую иногда приписывают ракете Р-29РМ, имела место в 1989 году при испытаниях по теме "Бегемот" и произошла она не с ракетой, а с ее макетом. Причиной аварии стала конструкторская ошибка (не были учтены коррозионные свойства материала трубки сигнализатора давления в среде имитатора топлива, вследствие чего была нарушена ее проходимость) в сочетании с нарушением эксплуатационной документации, приведшим к отключению блокирующих сигнализаторов давления. Последствия последних аварий с ракетами на подводных лодках в большей степени зависят от архитектуры подводной лодки, а не от применяемого типа топлива. Так, например, авария с Р-39 на подводной лодке проекта 941 в 1991 году, связанная с разрушением ракеты, произошла после нештатного наддува ракетной шахты, а не межступенчатого отсека при сочетании двух неисправностей. Разрушение ракеты сопровождалось воспламенением ее двигателей и порохового аккумулятора давления. Были сорваны обтекатели на двух крышках шахт, обгорело акустическое покрытие легкого корпуса, выгорела часть медных трубопроводов в ограждении рубки, незначительно поврежден гребной винт, внутри отсека разрушились трубопроводы спецгидравлики управления крышкой аварийной шахты (после аварии эта шахта выведена из эксплуатации). Следует также отметить, что последствия могли стать почти катастрофическими, если в процессе аварии не был бы выполнен маневр "срочное погружение", удаливший разрушенную ракету с подводной лодки. При произошедших ранее авариях с жидкостными межконтинентальными ракетами повреждение конструкций подводной лодки также не привело к тяжелым последствиям (в 1976-м и в 1977 году, Р-29). При аварии с ракетой Р-29Р на подводной лодке в 1982 году были задействованы аварийные системы (слива окислителя, орошения аварийной шахты) и ущерб свелся к минимуму. Аварии на ракетах Р-29РМ отсутствовали. Что касается аварийности при эксплуатации ракет на ракетных базах, то она связана с внешними механическими воздействиями на ракету вследствие опрокидывания агрегатов на автомобильном ходу или повреждения целостности корпусов из-за ошибочных действий личного состава. Все аварии были ликвидированы с минимальным ущербом путем применения штатных аварийных средств и инструмента ракетных баз. Достигнутые сроки эксплуатации жидкостных и твердотопливных ракет в результате проведенных работ по продлению сроков эксплуатации одинаковы - 12 лет свыше гарантийных сроков. УТИЛИЗАЦИЯ Жидкостные и твердотопливные ракеты различаются проблемами, связанными с их утилизацией и необходимыми для этого затратами. Жидкостные ракеты подводных лодок после выгрузки и демонтажа боевых блоков транспортируются на завод-изготовитель. После слива компонентов топлива и нейтрализации ракеты разбираются, корпуса утилизируются методом разделения на разнородные элементы, из аппаратуры извлекаются драгметаллы. Компоненты топлива используются повторно. Разделанные топливные баки отправляются на переплавку, то есть для повторного использования. В настоящее время по этим технологиям утилизировано около 1200 морских жидкостных ракет с истекшими сроками службы. Твердотопливные ракеты после выгрузки и демонтажа боевых блоков транспортируются на завод-изготовитель, где разбираются на составные части. Металлические элементы и приборы утилизируются аналогично методам для жидкостных ракет. Двигатели транспортируются на утилизацию методом выжигания на стендах Федерального научно-производственного центра "Алтай" в городе Бийске. После сжигания или удаления твердого топлива необходима ликвидация остающихся корпусов двигателей, изготовленных из волокон органопластика и не подлежащих вторичному использованию. Сегодня она решается путем фрагментации корпусов и их захоронения. Разрабатываемые экологически чистые методы утилизации, например, путем вымывания топлива из корпуса высоконапорной струей воды, растворителей, криогенных жидкостей и так далее, пока не вышли за рамки лабораторных исследований. Связующее современных твердых топлив представляет собой поперечно сшитую матрицу, защищенную от воздействий, нерастворимую и неразрушаемую большинством растворителей, особенно водой. В настоящее время для ликвидации твердотопливных зарядов применяется метод их выжигания на стендах. При этом в атмосферу выбрасываются вредные продукты сгорания, в первую очередь хлористый водород (20%), окись алюминия (28%), угарный газ (30%), что ведет к неблагоприятным экологическим последствиям. Предпочтительным способом ликвидации твердотопливных зарядов, позволяющим исключить вредные выбросы, является сжигание их на специальных "закрытых" стендах, оснащенных мощной системой очистки газов. Имеющиеся установки сжигания твердотопливных двигателей как открытого, так и закрытого типа ("улитка") очень дороги и пока не нашли широкого применения. Наиболее простой и не требующий больших затрат - это способ ликвидации твердотопливных ракет методом пуска. Такой способ был реализован при ликвидации боекомплекта ракет Р-31. Пуски производились по боевому полю в штатном режиме после десятилетней эксплуатации. Таким же образом были ликвидированы два боекомплекта ракет Р-39 в 1996-1997 годах. В этом случае ликвидация ракет производилась подачей команды на аварийное выключение всех, в том числе неработающих, двигателей (разделение ступеней и вскрытие передних днищ зарядов) на 23-й секунде полета. Это приводило к воспламенению всех зарядов и выгоранию их преимущественно в воздухе. Остатки ракет падали в море. Пуски производились под наблюдением представителей США. Проведенный непосредственно в районе пусков Р-39 экологический мониторинг водного бассейна и воздушного пространства следов воздействия на окружающую среду не выявил. Последующая утилизация ракет Р-39(У), а следовательно, и их зарядов твердого топлива, проводилась на стендах. При этом экологическая безопасность сжигания маршевых двигателей без сопла на открытом стенде обеспечивается использованием системы водного орошения струи продуктов сгорания, осаждения вредных компонентов в рабочей зоне стенда и вторичной нейтрализацией полученных технологических стоков. Орошение продуктов сгорания в темпе испытания проводится кольцевыми коллекторами, расположенными вдоль струи продуктов сгорания. Стоки отводятся в накопительный бассейн и нейтрализуются гашеной известью. Полученная при этом технически чистая вода возвращается в систему стенда, а твердая фаза, содержащая оксид алюминия, идет на дальнейшую переработку. При этом случае соблюдения технологии сжигания и при экологически благоприятных метеоусловиях риск для населения Бийска и экосистем оценивается как весьма низкий. Опыт эксплуатации, утилизации и других вопросов использования твердого или жидкого топлива на морских баллистических ракетах требует дальнейшего изучения и обсуждения специалистами с учетом множества современных обстоятельств.

milstar: Что касается темпов перевооружения на «Ярс», то они соответствуют поручениям президента и составляют от четырех до пяти ракетных полков в год. Этого вполне достаточно, чтобы своевременно в установленные сроки завершить перевооружение РВСН. В декабре мы практически завершили постановку на боевое дежурство пяти ракетных полков в Тагильском, Новосибирском и Козельском соединениях. Как и планировалось, в войска поступили в соответствии с ГОЗ ракеты «Ярс» подвижного грунтового и стационарного базирования. В 2016 году еще пять полков будут переоснащаться на этот комплекс. Начнется перевооружение Иркутской и Йошкар-Олинской дивизий, продолжится Новосибирской, Козельской, Нижне-Тагильской. В эти соединения поступят два десятка межконтинентальных баллистических ракет. Безусловно, столь высоких темпов переоснащения удалось добиться благодаря использованию готовой инфраструктуры позиционных районов ракетных дивизий ПГРК, что позволило существенно снизить затраты на ввод РК «Ярс» в группировку РВСН. – В чем достоинства этого комплекса Подробнее: http://www.vpk-news.ru/articles/28908

milstar: Генеральный конструктор ОАО "ГРЦ Макеева" " Владимир Дегтярь: "Мы проводим инициативные проработки по созданию перспективного стратегического морского ракетного комплекса" 16 декабря 2014 http://topwar.ru/64850-generalnyy-konstruktor-oao-grc-makeeva-vladimir-degtyar-my-provodim-iniciativnye-prorabotki-po-sozdaniyu-perspektivnogo-strategicheskogo-morskogo-raketnogo-kompleksa.html Генеральный конструктор ОАО "ГРЦ Макеева" " Владимир Дегтярь: "Мы проводим инициативные проработки по созданию перспективного стратегического морского ракетного комплекса"Ответственные задачи в рамках Государственной программы вооружений решает одно из ведущих предприятий российской ракетной промышленности - ОАО "Государственный ракетный центр (ГРЦ) Макеева" (Миасс, Челябинская область). Об основных его разработках в области стратегических ракетных комплексов с баллистическими ракетами морского и наземного базирования в интересах ВМФ и РВСН, а также ракетно-космических комплексов "Интерфаксу-АВН" рассказал генеральный директор, генеральный конструктор ОАО "ГРЦ Макеева", член-корреспондент РАН Владимир ДЕГТЯРЬ. - Владимир Григорьевич, не так давно осуществлён очередной успешный пуск стратегической ракеты морского базирования "Синева" разработки и производства ГРЦ Макеева. Какие задачи ставились во время этого пуска? - 5 ноября 2014 года в 9:30 мск из акватории Баренцева моря с борта ракетного подводного крейсера стратегического назначения "Тула" из подводного положения был осуществлен успешный запуск межконтинентальной баллистической ракеты "Синева". Пуск был выполнен по планам учебно-боевой подготовки и совмещен с выполнением других работ в интересах министерства обороны. Все задачи, поставленные перед ОАО "ГРЦ Макеева", выполнены, и это, бесспорно, очередной заслуженный успех кооперации предприятий промышленности и ВМФ. Яндекс.Директ - Ранее сообщалось, что принятая на вооружение в 2007 году морская ракета "Синева" обладает большим модернизационным потенциалом. Ведутся ли работы по развитию этого носителя? - Действительно, модернизационный потенциал у морской ракеты "Синева" большой, что и показала проведенная в ГРЦ разработка и комплекса новой морской ракеты "Лайнер", выполненная в интересах министерства обороны. По энергомассовому совершенству ракета "Лайнер" превосходит все современные стратегические ракеты Великобритании, Китая, России, Соединенных Штатов и Франции, а по боевому оснащению не уступает (в условиях СНВ-3) американскому "Трайденту-2". Ракета "Лайнер" может быть оснащена смешанной комплектацией боевых блоков различного класса мощности. В январе 2014 года распоряжением президента РФ комплекс ракетного оружия Д-9РМУ2.1 с ракетой Р-29РМУ2.1 "Лайнер" принят на вооружение. Ракета "Лайнер", обладая наивысшим энергомассовым совершенством среди отечественных и зарубежных морских и сухопутных стратегических ракет, имеет ряд новых качеств. Это увеличенные размеры круговой и произвольной зон разведения боевых блоков; применение настильных траекторий во всем диапазоне дальностей стрельбы в астроинерциальном и астрорадиоинерциальном (при коррекции по спутникам системы ГЛОНАСС) режимах работы системы управления. Предусмотрено несколько вариантов боевого оснащения российской ракеты "Лайнер": десять боевых блоков малого класса мощности со средствами противодействия ПРО; восемь боевых блоков малого класса мощности с более эффективными средствами противодействия ПРО; четыре боевых блока среднего класса мощности со средствами противодействия ПРО. Многовариантность боевого оснащения позволит адекватно реагировать на изменения внешнеполитической обстановки, связанной с развертыванием системы противоракетной обороны или договорными ограничениями по количеству боезарядов. - В 2008 году "Синева" установила мировой рекорд дальности стрельбы для морских ракет - свыше 11,5 тыс. км. Планируется ли в будущем улучшить этот показатель? - Модернизационный потенциал и высокие энергетические возможности ракеты и комплекса "Синева" были продемонстрированы в 2008 году в ходе проведения президентских стрельб пуском на дальность более 11 тыс. км по акватории в Тихом океане. Цель пусков морских ракет в мирное время обусловлена решением определенных задач. Во-первых, это контрольно-серийные отстрелы, во-вторых, отработка новых технических решений, в-третьих, обучение личного состава подводных лодок. Что же касается установления "мировых рекордов", то это, скорее, приятное дополнение к суровым будням подводников. Если же говорить шире о совокупном результате пусков ракет, то это, разумеется, не только доставка боевых блоков в заданный район. Это и подтверждение значимости научного и производственно-технологического потенциала ГРЦ и предприятий кооперации, отечественной ракетно-космической отрасли в целом; убедительное доказательство нашей способности реализовать любые задачи по развитию стратегических вооружений и обеспечению, тем самым, надежной защиты нашей Родины в далеко непростой современной военно-политической обстановке. Возвращаясь к вашему вопросу, могу ответить так: технические возможности обновления "мирового рекорда" у морских ракет "Синева" и "Лайнер" имеются. - Ведётся ли работа по продлению сроков эксплуатации ракетных комплексов РСМ-52 и РСМ-54? До какого года могут они находиться на боевом дежурстве в составе ВМФ России? - В настоящее время проводится работа по продлению сроков эксплуатации ракет РСМ-54 до сроков, установленных тактико-техническим заданием министерства обороны. Ракеты РСМ-52 благополучно ликвидированы (последняя - в сентябре 2012 года) в рамках российско-американской программы совместного уменьшения угрозы по контракту №HDTRA-07-С-0014 от 1 июня 2007 года. - ГРЦ Макеева определено головным разработчиком перспективной тяжёлой жидкостной ракеты наземного базирования, которая должна заменить в группировке РВСН ракеты РС-20В "Воевода". На каком этапе находится эта работа? - В соответствии с договором между министерством обороны РФ и ОАО "ГРЦ Макеева" выполняется опытно-конструкторская работа по созданию стратегического ракетного комплекса наземного шахтного базирования. Выполнен первый этап работ - разработка и защита эскизного проекта. Ведется разработка конструкторской и технологической документации, идет изготовление материальной части опытных образцов и проведение экспериментальной отработки. Головным заводом-изготовителем ракеты выбран ОАО "Красмаш", к традиционной кооперации ОАО "ГРЦ Макеева" добавился ряд новых исполнителей. Финансирование опытно-конструкторской работы идет в полном объеме в соответствии с договором. То, что новая задача по формированию облика стратегических ядерных сил сдерживания, связанная с разработкой перспективной тяжёлой ракеты наземного базирования, поручена руководством страны Государственному ракетному центру, является подтверждением высокого научно-технического потенциала предприятия, его авторитета крупнейшего научно-конструкторского центра России по разработке ракетно-космической техники. - С вводом в боевой состав ВМФ РФ перспективных подводных лодок "Борей" основу ударной группировки АПЛ составят твердотопливные ракеты "Булава" разработки Московского института теплотехники. Означает ли это, что ГРЦ Макеева не будет больше заниматься работами по прежней своей основной тематике - баллистическим ракетам морского базирования? - Ракету "Булава" для подводных лодок "Борей" разрабатывал Московский институт теплотехники, ОАО "ГРЦ Макеева" является головным разработчиком корабельного боевого стартового комплекса 3Р-21, обеспечивающего пуск этой ракеты из-под воды и надводного положения и состоящего из корабельного комплекса систем управления, системы защиты комплекса, функционального комплекса, системы управления функциональным комплексом и т.д. Комплекс 3Р-21 предназначен для обеспечения условий хранения, предпусковой подготовки и пуска "Булавы", в том числе при залповой работе от одного до полного боекомплекта при любых погодных условиях. В комплексе 3Р-21 впервые, по сравнению с аналогичными комплексами предыдущих поколений, внедрены передовые решения, позволившие значительно повысить его технические и эксплуатационные характеристики. Это централизованная система электропитания; единая информационная система; унифицированные вычислительные средства; автоматическое перенацеливание; программное обеспечение анализа документируемой информации; волоконно-оптическая линия передачи специальной информации; новые методы поддержания температуры хранения ракеты "Булава"; арматура с однопозиционными органами управления. В процессе строительства ракетных подводных крейсеров проекта "Борей" ОАО "ГРЦ Макеева" с кооперацией предприятий обеспечило изготовление, поставку, шеф-монтажные и пусконаладочные работы комплекса 3Р-21, а также техническое сопровождение и участие в работах с комплексом при проведении швартовных, заводских и государственных испытаний ракетных подводных крейсеров. ГРЦ Макеева проводит работы по размещению и изготовлению комплекса 3Р-21 для ракетного подводного крейсера проекта "Борей-А". ОАО "ГРЦ Макеева" как головной разработчик жидкостных и твердотопливных ракетных комплексов стратегического назначения с баллистическими ракетами, создатель трех поколений морских стратегических ракет, естественно, проводит инициативные проработки по созданию перспективного стратегического морского ракетного комплекса. Создание нового комплекса - процесс длительный и затратный, который требует осознания военно-политическим руководством страны необходимости разработки такого комплекса, включение работ по его разработке в Государственную программу вооружения, выдачу министерству обороны технического задания на его конкурсную разработку, проведение конкурса и определение победителя. В настоящее время в заинтересованных органах ведется обсуждение по включению работ по перспективному морскому комплексу в Государственную программу вооружения. - Ранее ГРЦ Макеева активно занимался дооборудованием существующих баллистических ракет подводных лодок в космические носители. В частности, ракеты Р-29Р и Р-29РМ дооборудовались в космические ракеты "Штиль" и "Волна". Продолжается ли этот проект? - Государственным ракетным центром с 2001 года проводятся запуски экспериментальных аппаратов для отработки в условиях реального космического полета перспективных технологий. Совместно с ВМФ было проведено более десяти запусков исследовательских космических аппаратов дооборудованными ракетами в конце сроков их эксплуатации. И сегодня возможно выполнение таких задач с помощью ракет Р-29РМ ("Штиль") и Р-29Р ("Волна"). Это является следствием высокой адаптивности наших ракет, которая позволяет проводить разнообразные эксперименты в космическом пространстве. У нас есть предложения от иностранных и отечественных фирм на проведение научно-исследовательских запусков. Уверен, что с приходом в министерство обороны новой команды, а также благодаря прошедшим за последнее время реорганизациям в ракетно-космической отрасли, такие запуски будут продолжены. - Продолжаются ли работы по реализации проекта авиационного ракетного комплекса космического назначения "Воздушный старт", который был в свое время поддержан научно-техническим советом Роскосмоса? - Продолжаются. Надо отметить, что создание такого комплекса обеспечило бы поддержание многофункциональности и рациональной взаимозаменяемости систем средств выведения для достижения гарантированного независимого доступа в космос в целях национальной безопасности и расширило возможности представления услуг на мировом рынке. Закономерно, что инвесторы, которые готовы участвовать в проекте, поднимают вопрос о подтверждении его технической реализации. Учитывая, что одной из сложнейших технических задач является десантирование стотонной ракеты с самолета, для исключения технического риска и расширения возможностей по привлечению инвесторов на начальной фазе реализации программы проводятся проектно-конструкторские работы по отработке основной инновационной составляющей проекта - новой технологии высотного десантирования ракеты ("Демонстратор технологии"). Планируется обеспечить в натурных условиях сброс с самолета габаритно-массового макета ракеты, что при положительном результате будет убедительным аргументом в пользу реализации проекта. А выполнить этот этап мы бы хотели в рамках частно-государственного партнерства, о котором сейчас много говорится, но конкретных результатов, к сожалению, мало. Оптимизма мы не теряем, и работа с потенциальными заказчиками пусковых услуг авиационного ракетного комплекса космического назначения "Воздушный старт" нами проводится. Подписаны меморандумы о намерениях с компанией SSTL (Великобритания), ОНВ-Systems (ФРГ), японскими фирмами "Мицубиси электрик", "Ай Эйч Ай Корпорейшн" о запуске полезных нагрузок. Также подписаны двухсторонние протоколы о возможности базирования авиационного ракетного комплекса космического назначения "Воздушный старт" на авиабазах острова Биак (Индонезия) и Камрань (Вьетнам), максимально приближенных к экватору, что увеличивает возможности по выводу космических аппаратов на геостационарную орбиту. - Ведется ли разработка ракеты-носителя тяжелого класса "Россиянка" с многоразовой первой ступенью? - Для решения задач снижения удельной стоимости выведения и уменьшения количества зон падения, предусмотренных ФКП на 2006-2015 годы, ГРЦ Макеева в 2007 году были разработаны материалы по ракете космического назначения "Россиянка" с многоразовой первой ступенью. Отличительной особенностью предлагаемого варианта ракеты космического назначения является способ возвращения в район космодрома и приземления многоразовой первой ступени путем повторного запуска штатных жидкостных ракетных двигателей ступени (ракетная схема многоразовости), для чего в баках предусматривается необходимый запас топлива. Впоследствии такое техническое решение подтверждено созданием и отработкой многоразовой первой ступени ракеты космического назначения "Falkon" в США. ОАО "ГРЦ Макеева" продолжило работы в этом направлении. В 2013 году при разработке проекта "Облик - ГРЦ" была предложена модернизация одноразовой первой ступени ракеты космического назначения тяжелого класса в многоразовую путем установки на ступени дополнительных узлов и агрегатов, обеспечивающих ее многоразовое применение. В 2014 году при разработке материалов "Облик-ЛК-ГРЦ" по рассмотрению вариантов ракеты космического назначения легкого и сверхлегкого классов предложен, в том числе, вариант ракеты сверхлегкого класса с многоразовой первой ступенью по схеме космической ракеты "Россиянка". Одновременно предусматривается выполнение такой ступенью роли демонстратора ключевых технологий, предшествуя разработке ракеты космического назначения тяжелого и сверхтяжелого классов с многоразовой первой ступенью. - В ГРЦ Макеева в свое время была разработана универсальная малогабаритная космическая платформа, на базе которой созданы космические аппараты "Компас" и "Компас-2", предназначенные для краткосрочных прогнозов землетрясений с использованием космических средств. Продолжаются ли работы по этой теме? - Государственный ракетный центр принимает участие в различных конкурсах по созданию спутниковых систем дистанционного зондирования Земли, используя полученный опыт создания космического аппарата "Компас". В свое время были выпущены системные проекты в интересах Узбекистана, Южной Кореи, по заказу Федерального космического агентства. Практического продолжения эти работы не получили, но мы готовы участвовать в таких проектах, как по предоставлению средств выведения космических аппаратов (ракеты-носители семейства "Штиль", создаваемые путем дооборудования серийно используемых БРПЛ РСМ-54), так и в создании космических аппаратов различного назначения на базе платформы "Компас", либо ее модификации.

milstar: Министерство обороны РФ обнародовало планы запусков межконтинентальных баллистических ракет (МБР) и ракет-носителей (РН) с космическими аппаратами (КА) в 2016–2017 годы. Должно состояться семь пусков МБР РС-12 «Тополь», три – РС-24 «Ярс», один – РС-26 «Рубеж» и один – РС-18 «Стилет». В 2018 году у «Стилетов» заканчивается срок службы, поэтому единственный пуск его, очевидно, будет контрольным и решит судьбу всех ракет, находящихся на боевом дежурстве. Вероятно, эта ракета выведет в космос полезную нагрузку. Это следует из анализа документации тендеров на страхование ответственности за причинение вреда жизни, здоровью или имуществу других лиц. Если для каждого пуска «Тополя», «Ярса» и «Рубежа» максимальная цена контракта на страхование определена в 305 280 руб., то для «Стилета» – 2 467 200 руб. Всего на страхование пусков МБР военное ведомство намерено потратить не более 5 825 280 руб. Страховая сумма (лимит ответственности) для каждой МБР «Тополь», «Ярс» и «Рубеж» определена в 150 млн руб., а «Стилета» – 1,2 млрд руб. Общая страховая сумма составляет 3,18 млрд руб. По условиям тендера срок действия страхования по каждому пуску начинается с момента подъема ракеты с пусковой установки при санкционированном пуске и прекращается в случае успешного пуска – по истечении 30 дней, в случае аварийного – по истечении 365 дней. Кроме того, на 2016–2017 годы запланированы запуски КА военного назначения. В том числе три – с использованием РН «Союз 2.1.б», один – «Союз 2.1.в» и два – РН «Протон». Начальная (максимальная) цена контрактов на страхование каждого пуска была определена путем применения метода сопоставимых рыночных цен (анализа рынка). Для пуска РН «Протон» она составляет 9 920 400 руб., «Союз 2.1.б» – 7 214 499 руб. и «Союз 2.1.в» – 4 820 400 руб. Всего Минобороны планирует потратить на страховку максимум 46 304 400 руб. При этом страховая сумма (лимит ответственности) в случае потери любого РН установлена в 900 млн руб., а полезной нагрузки, которая выводится в космос ракетами-носителями: «Союз-2.1.б» – 4,5 млрд руб., «Союз-2.1.в» – 2,4 млрд руб., «Протон» – 6 млрд руб. Общая страховая сумма для РН с полезной нагрузкой составляет 33,3 млрд руб. Таким образом, стоимость ракет и полезной нагрузки, которые в ближайшие два года Минобороны планируется отправить в космос, составит 36,48 млрд руб.

milstar: Переход на Тихоокеанский флот (ТОФ) нового ракетного подводного крейсера стратегического назначения (РПКСН) «Владимир Мономах» вновь отложен до конца года. Причина – в неспособности главного оружия крейсера, ракеты «Булава», гарантированно поразить цель. Делают ракету там же, где «Тополя» и «Ярсы». К ним претензий нет. Значит, проблема не в производстве, на что ссылается разработчик – Московский институт теплотехники (МИТ), а в конструктивных недостатках самого оружия. Для сухопутных ракет используется транспортно-пусковой контейнер (ТПК). В нем ракета едет к месту старта, из него она стартует. Морские ракеты загружались в шахту подводной лодки без ТПК, его роль играла шахта. Так было до тех пор, пока не появилась «Булава». Для нее реализовали особую схему: в шахту начали грузить ракету, находящуюся в ТПК. Трудно найти логичное объяснение такому решению. Чтобы не терять слишком много в диаметре ракеты, разработчик предусмотрел зазор между внутренней стенкой контейнера и ракетой в несколько раз меньше зазора между внутренней стенкой шахты и ракетой. У американцев, например, зазор между контейнером и ракетой меньше 20 мм. У нас и у американцев этот зазор определяется размещением горизонтальной амортизации, необходимой для обеспечения сохранности ракеты при подводных взрывах на безопасном для лодки расстоянии. Для «Булавы» эта задача решается амортизацией, размещенной в зазоре между транспортно-пусковым контейнером и шахтой. Поэтому зазор между ракетой и контейнером действительно может быть меньше. Но он должен быть достаточным для погрузки ракеты в транспортно-пусковой контейнер и для безопасного старта ракеты. Вот здесь и возникают вопросы. При изготовлении рабочего чертежа конструктор указывает не только какой-либо линейный размер детали, но и допуск на этот размер (плюс/минус). Допуски определяются в основном точностными характеристиками заводских станков, прессов и другого оборудования. По этой причине они никогда не бывают нулевыми. Контролируются эти размеры контрольными приспособлениями. Если размер в допуске, то деталь проходит контроль. Здесь же надо отметить, что контрольные приспособления сами имеют погрешности. Намного сложнее с определением размеров сборочных единиц. Их размеры и допуски на эти размеры определяются расчетами по сложным методикам размерных цепочек и уже являются вероятностными величинами. Как это влияет на внутренний диаметр транспортно-пускового контейнера и наружный диаметр ракеты? Контейнер изготавливается на гибочном стане с последующей сваркой по продольному шву. Оболочка ступени ракеты – это мотаный кокон, который какой-либо механической обработке по наружному диаметру не подвергается. Понятно, что с учетом таких технологий производства допуски на эти диаметры будут далеки от нулевых. И их тяжело контролировать, учитывая длину контейнера и ракеты. Плюс к этому неизбежны искривления контейнера и ракеты как по длине, так и по окружности. Кроме того, имеют место быть неперпендикулярность стыковочных поверхностей ступеней к теоретической оси ракеты и температурные изменения размерных параметров ракеты и транспортно-пускового контейнера из-за перепада температуры в шахте подводной лодки. Таким образом, ракета представляет собой членисто-составной объект с отклонением по всем оговоренным выше измерениям, который размещается и стартует из транспортно-пускового контейнера, тоже не являющегося идеальным цилиндром. При этом большинство из значимых размеров не поддаются прямым измерениям, а являются расчетными и вероятностными. Единственным, по существу, критерием совместимости ракеты и контейнера является факт: «залезла» ракета в ТПК или нет… Но затягивается ракета в контейнер с малыми скоростями. Ракета, не являясь абсолютно жестким объектом, «приспосабливается» к контейнеру без больших поперечных перегрузок. Иное дело старт. В этом случае скорость движения ракеты в контейнере весьма высокая, и все изгибы ракеты сопровождаются высокими поперечными перегрузками. При этом они не постоянны по длине ракеты и увеличиваются на тех участках, где возрастает степень деформации. Если на каких-то участках поперечная перегрузка превосходит допустимую, отдельные узлы ракеты, расположенные на этих участках, имеют право выйти из строя. Таким образом, в этой модели можно объяснить, почему отказы случаются в различных узлах ракеты «Булава» и практически не повторяются. Но иногда ракета летит. Очевидно, что в этом случае выбранный зазор между транспортно-пусковым контейнером и ракетой оказался соизмерим с технологическими допусками. Как все это можно «лечить»? Самое правильное – выбросить транспортно-пусковой контейнер из шахты и начать проектирование ракеты с нуля. В этом случае придем к проекту «Булава-45», предложенному в начале 2000-х годов. Если контейнер оставлять, то надо увеличивать зазор за счет уменьшения диаметра ракеты. Но и в этом случае проектировать ракету надо с нуля. Можно также рассмотреть варианты с увеличением диаметра ракетных шахт, но как быть с уже изготовленными подводными лодками? Потребуется также перепроектировать транспортно-пусковой контейнер и отработать способ старта. МИТ, не признавая своей ошибки в проектировании, тем не менее должен не повторить ее в «Булаве-М», разработка которой уже ведется. Видимо, в связи с предстоящими переделками ракеты решено продолжить службу минимум до 2020 года тяжелого подводного ракетоносца «Дмитрий Донской», который используется в качестве испытательной платформы. Об этом ТАСС сообщил источник в российском оборонно-промышленном комплексе. Можно предположить, что и новую ракету раньше ждать не приходится. А до этого срока стратегическая составляющая ТОФ, у которого все надежды были на РПКСН проектов 995 и 995А, превращается в «хромую утку». Ведь никто не гарантирует, что «Булава» сможет долететь до назначенной цели.

milstar: Глава Красмаша должил о выполнении госзаказа по МБР «Синева» 2 Для проверки хода выполнения поставок межконтинентальных баллистических ракет на завод прибыл министр обороны РФ Сергей Шойгу Госзаказ по поставкам межконтинентальных баллистических ракет (МБР) «Синева» будет выполнен Красноярским машиностроительным заводом в полном объеме и в установленные сроки, сообщил глава предприятия Александр Назарько. Для проверки хода реализации гособоронзаказа на Красноярский машиностроительный завод прибыл министр обороны РФ Сергей Шойгу. — Госзаказ 2016 года по ракетам «Синева» будет выполнен своевременно и полностью. Все комплектующие изготовлены, завершается сборка изделий, — приводит ТАСС сообщение гендиректора предприятия. Он также доложил министру, что партнеры, участвующие в реализации госзаказа, поставили необходимую продукцию в срок. По словам руководителя завода, проведенная модернизация на Красмаше позволит изготавливать вооружения нового поколения по новым технологиям, а также расширить линейку продукции для Минобороны «и по диаметру, и по весовым, и по массогабаритным характеристикам». — Завод смело смотрит в завтрашний день и готов работать по новой тематике, — подчеркнул Александр Назарько. Кроме того, гендиректор предприятия пояснил, что Красмаш использует комплектующие российского производства. Читайте также: Читайте далее: http://izvestia.ru/news/629118#ixzz4IWfukCQT

milstar: Перспективная версия межконтинентальной баллистической ракеты «Булава» для ВМФ России будет отличаться от принятой на вооружение несколько большими размерами, стартовым весом и увеличенной полезной нагрузкой. Об этом Ленте.ру сообщил источник в оборонной промышленности. При этом ракета сохранит совместимость с пусковыми установками атомных подводных лодок проекта 955/955А «Борей». «Одно из главных требований — наращивание дальности полета и возможностей комплекса средств преодоления ПРО. Эти требования подразумевают увеличение размеров и массы ракеты. Сейчас мы имеем резерв, за счет конструкции комплекса Д-30, чтобы увеличить и длину и диаметр ракеты. В частности, рассматривается вариант отказа от ТПК — транспортно-пускового контейнера», — сообщил источник. По его словам, полезная нагрузка ракеты может возрасти более чем вдвое, а дальность полета достичь 12 тысяч километров. Собеседник редакции также отметил, что новая ракета может быть использована для оснащения перспективных ракетоносцев, которые должны в конце 2020-х — начале 2030-х годов прийти на смену модернизированным АПЛ проекта 667БДРМ «Дельфин» постройки второй половины 1980-х годов. Ракета 3М30 Р-30 «Булава» принята на вооружение в составе комплекса Д-30 в качестве главного оружия ракетных подводных крейсеров проекта 955/955А «Борей». Согласно данным из открытых источников, максимальная дальность полета ракеты составляет 9300 км, стартовый вес — около 37 тонн, забрасываемый вес — 1150 кг. В последний раз пуски «Булавы» проводились в сентябре 2016 года. Одна из двух баллистических ракет, выпущенных с подводного крейсера стратегического назначения «Юрий Долгорукий» в акватории Белого моря по камчатскому полигону Кура, самоликвидировалась. Боевой блок первой ракеты, выполнив полный цикл полетной программы, успешно поразил цели на полигоне.

milstar: Энергия Солнца на Землю поступает только одна двухмиллиардная доля этой энергии, но она составляет около 2,5*10^18 кал./мин. Поток энергии, посылаемый Солнцем к Земле, превышает 20 млн ЭДж в год. Из-за шарообразности Земли к границе атмосферы подходит только четверть этого потока. Из нее около 70% отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн ЭДж в год. 10^18 Дж эксаджоуль ЭДж EJ ---------------------------------------------- 1,54 млн ЭДж в год = 1.54 * 10^6 * 10^18= 1.54*10^24 джоуль ############################################### =15400 *10^20 15400/(365*24) =1.758 *10^20 энергия солнца падающая за час на Землю 1.758 *10^20 больше чем суммарный ядерный запас в период пика 10^20 джоуль ( 25 000 мегатонн) ################### 10^18 Дж = 250 мегатонн =взрыв вулкана кракатау ####################### 10^20 Дж = 25 000 мегатонн (больше чем суммарный запас ядерного оружия в период пика 1985) ###################################################################### Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы[1]. Таким образом, 1 Дж = 1 Н·м=1 кг·м²/с². В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер



полная версия страницы