Форум » Дискуссии » Ирбис-Э,Барс,Жук-АЭ/МЭ,Р-441 Ливень, Р-439 Легенда,Р-438,ТРРС-2011 Ладья & » Ответить

Ирбис-Э,Барс,Жук-АЭ/МЭ,Р-441 Ливень, Р-439 Легенда,Р-438,ТРРС-2011 Ладья &

milstar: The BARS is the most advanced radar developed by Russian industry during the 1990s. It is unusual in being designed with a hybrid array arrangement, the receive path using very similar technology to US and EU AESAs, with similar sensitivity and sidelobe performance, ------------------------------------------------------------------------------------------------------------------------------------------------------------------ but using a Travelling Wave Tube and backplane waveguide feed for the transmit direction, a technology closest to the B-1B and early Rafale EA radars. As such the BARS is a transitional design sitting in between Passive ESAs (PESA) and contemporary AESAs The baseline N011M radar uses a vertically polarised 0.9 metre diameter aperture hybrid phased array, with individual per element receive path low noise amplifiers delivering a noise figure cited at 3 dB, similar to an AESA. The antenna is constructed using phase shifter and receiver 'stick' modules, a similar technology to early US AESAs. Three receiver channels are used, one presumably for sidelobe blanking and ECCM. The EGSP-6A transmitter uses a single Chelnok Travelling Wave Tube, available in variants with peak power ratings between 4 and 7 kiloWatts, and CW illumination at 1 kW. Cited detection range for a closing target (High PRF) is up to 76 NMI, for a receding target up to 50 NMI http://www.ausairpower.net/APA-Flanker-Radars.html#mozTocId533477 The Irbis-E is a direct evolution of the BARS design, but significantly more powerful. While the hybrid phased array antenna is retained, the noise figure is slightly worse at 3.5 dB, but the receiver has four rather than three discrete channels. The biggest change is in the EGSP-27 transmitter, where the single 7 kiloWatt peak power rated Chelnok TWT is replaced with a pair of 10 kiloWatt peak power rated Chelnok tubes, ganged to provide a total peak power rating of 20 kiloWatts. The radar is cited at an average power rating of 5 kiloWatts, with 2 kiloWatts CW rating for illumination. NIIP claim twice the bandwidth and improved frequency agility over the BARS, and better ECCM capability. The Irbis-E has new Solo-35.01 digital signal processor hardware and Solo-35.02 data processor, but retains receiver hardware, the master oscillator and exciter of the BARS. A prototype has been in flight test since late 2005. The performance increase in the Irbis-E is commensurate with the increased transmitter rating, and NIIP claim a detection range for a closing 3 square metre coaltitude target of 190 - 215 NMI (350-400 km), and the ability to detect a closing 0.01 square metre target at ~50 NMI (90 km). http://www.niip.ru/index.php?option=com_content&view=category&layout=blog&id=18&Itemid=23

Ответов - 11

milstar: Станция спутниковой связи мобильная Р-441-ОВ http://www.rfcmd.ru/military/R_441_OV.htm Станция спутниковой связи Р-441-ОВ, обеспечивает работу через ИСЗ-ретрансляторы ЕССС-2 на геостационарной орбите «Глобус-1», «Глобус-1М», «Глобус» и через ИСЗ-ретрансляторы ЕССС-2 на высоко-эллиптической орбите «Меридиан» в режимах с обработкой сигналов на борту и с прямой ретрансляцией в диапазонах частот 4/6 и 7/8 ГГц, а также через ИСЗ-ретрансляторы гражданского назначения типа «Экспресс», «Ямал» в режимах с прямой ретрансляцией в диапазоне частот 4/6 ГГц. Станция спутниковой связи Р-441-ОВ предназначена для организации помехозащищенной спутниковой связи в интересах воинских частей и подразделений тактического и оперативно-тактического звеньев управления, а также отдельных объектов оперативного и оперативно-стратегического звеньев управления Станция обеспечивает:Организацию засекреченной телефонной, телеграфной, фототелеграфной связи и передачу данных с пропускной способностью 1,2; 2,4; 4,8; 9,6; 19,2 кбит/сек при работе с аналогичными станциями, а также со станциями “Кристалл”, “Ливень”, “Легенда”, Р-439КУЛ Конструктивное исполнение станции обеспечивает: • одновременную работу в диапазонах 4/6 и 7/8 ГГц; • одновременную работу в диапазоне 4/6 ГГц в режиме ЕАСС-2 и в режиме НЭС; • одновременную работу в диапазоне 4/6 ГГц в режиме ЕАСС-2 и в режиме высокоскоростного магистрального канала.

milstar: РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ЛИНИИ ЗАГОРИЗОНТНОЙ СВЯЗИ «ЛАДЬЯ» 1. Испытания станции загоризонтной связи «Ладья». В апреле 2007г. проведены испытания образцов малогабаритной ТРРС (рис. 1) на загоризонтной линии связи на трассах 29, 84 и 119 км в районе г. Ступино. Параметры станции: диаметр антенн – 1,25м (усиление 32,5 дБ – диапазон 4,5 ГГц), импульсная мощность передатчиков 100 Вт [2]. В сентябре 2010г. проведены испытания этой же аппаратуры в районе г. Орёл с антеннами диаметром 2.5 м из состава станции Р-412 на трассах от 73 до 139 км. Размещение аппаратуры «Ладья» в кузове станции Р-412 показано рис 2а, б, в. http://mnirti.ru/file/serov0211.doc http://mnirti.ru/

milstar: Р-438 "Барьер-Т", малогабаритная станция спутниковой связи Технические особенности Радиостанция обеспечивает полную автономность работы в режимах передачи речи, цифровых и текстовых сообщений, автоматизированный контроль исправности, сопряжение с широким спектром оконечной аппаратуры по стыкам RS-232С, С1-ФЛ-БИ. Конструктивное исполнение позволяет транспортировать радиостанцию одним человеком. Режимы работы: • дуплексный режим закрытой телефонной связи; • симплексный режим приема-передачи данных; • формализованной служебной связи; • ОФТ со скоростью 1200 бит/с; • режим двухканального приема. Основные характеристики • Диапазон частот 4/6 ГГц • Информационная скорость 1200, 2400 бит/сек • Изотропная мощность, не менее 31 дБ Вт • Добротность приемной системы 0 ДБ/К • Количество каналов связи 51 (с шагом 10 кГц) • Питание от сети постоянного тока 10-30 В • Питание от сети переменного тока 180-250 В • Диапазон рабочих температур -40.. +50 oС • Время готовности, не более 35 сек. • Габаритные размеры 416х286х107 мм • Масса, не более 16 кг http://www.arms-expo.ru/049053052053124051048056051.html


milstar: http://www.media-phazotron.ru/?p=171 АФАР переходит границу «воздух-море». Применение РЛС с АФАР для комплексов морского базирования. Юрий Гуськов – генеральный конструктор ОАО «Корпорация «Фазотрон-НИИР» Традиционно ВМФ обладает уникальными боевыми возможностями, которые опираются на новейшие научно-технические достижения, а в перспективе потенциал морских систем многократно возрастёт. По мнению ведущих военных экспертов, весь XXI век станет веком мирового океана. В период 2015–2020 гг. в наиболее развитых странах будут реализованы комплексные программы развития военно-морских сил и средств, направленных на их использование как одной из главных ударных сил в бесконтактных войнах (в войнах шестого поколения). Особая роль ВМФ в системе обороны страны определяет и целый ряд специфических требований к бортовому оборудованию боевых кораблей. В силу их более высокой стоимости по сравнению с боевыми самолётами эффективная оборона собственно морской платформы – носителя вооружения является одним из основных тактико-технических требований к её бортовому оборудованию. Боевые корабли являются объектом повышенного внимания со стороны многочисленных и разнообразных источников угроз, таких как ракет воздушно-космическо-морского базирования и средств радиоэлектронного противодействия. Одновременно боевые корабли должны атаковать большое число целей. Ассортимент объектов атаки и источников угроз для морских задач значительно шире, чем для авиационных. При этом система вооружения боевого корабля развёртывается в полноценную систему вооружения и обороной, а высокая пропускная способность этой системы (большое число обслуживаемых объектов при минимальном времени реакции на их появление) является одним из обязательных тактико-технических требований. Традиционное требование к обороне важных объектов – её всеракурсность. В самолетном варианте это требование реализуется в значительной мере за счет высокой маневренности самого летательного аппарата и в ряде случаев можно обойтись одной РЛС с переднебоковым сектором обзора. Надводные корабли имеют значительно большие размерения, а соответственно и худшую маневренность, которую можно компенсировать размещением на корабле многоапертурных антенн. Каждая из таких антенн обеспечивает свой сектор ответственности. Предпосылки к использованию АФАР в комплексах морского базирования Для наиболее полного раскрытия уникальных боевых возможностей ВМФ необходимо в максимальной мере использовать передовой опыт, накопленный в смежных отраслях науки и техники, например, в авиационной радиоэлектронике. В авиации, в силу высоких требований к бортовому оборудованию, бурно развиваются технологии, позволяющие создавать надёжные и высокоэффективные аппаратные информационные средства. В результате значительно расширяются функциональные возможности бортового оборудования современных летательных аппаратов различных классов для ВВС и ВМФ. В качестве примеров достаточно привести БРЛС с активной фазированной антенной решеткой «Жук-АЭ» для самолета МиГ-35 ВВС, РЛК для ВМФ – «Копье-А» и «Арбалет» вертолетов Ка-27М и Ка-52К, БРЛС «Жук-МЭ» самолетов МиГ-29К/КУБ, корабельную РЛС «Арбалет-Д» для обнаружения средств воздушного нападения (ОСВН) (рис. 1). В июне этого года РЛС «Арбалет» успешно демонстрировалась на международном военно-морском салоне в Санкт-Петербурге. На основе АФАР можно создавать высокоэффективные перспективные системы управления вооружением и обороной не только для летательных аппаратов, но и для боевых кораблей различных классов. Использование АФАР в комплексах морского базирования по сравнению с самолетными существенно облегчается благодаря тому, что корабельные силовые энергетические установки обладают на несколько порядков большими мощностями, что облегчает реализацию системы охлаждения приемо-передающих модулей АФАР. Значительно менее жесткие массо-габаритные ограничения в корабельных системах позволяют не только увеличить размеры апертуры антенны и ее направленные свойства (при той же длине волны), но и расширяют возможности выбора рационального вида диаграммы направленности за счет размещения облучателей по апертуре. Важным фактором успешного внедрения передовых технологий авиационной радиоэлектроники в морскую тематику является наличие современной научно-производственной базы – ОАО «Корпорация «Фазотрон-НИИР». У нас имеются все необходимые условия: налаженное производство, современное оборудование, отработанные технологии; научно-технический потенциал, стендово-производственная база, коллектив разработчиков и управленцев. Конкурентные преимущества нашей Корпорации в области создания новейшей радиолокационной техники обеспечивает опыт работы на внутреннем и внешних рынках за последние 15 лет. На внутреннем рынке проведена разработка и освоено серийное производство БРЛС для семи типов комплексов авиационного базирования: радиолокационного комплекса для ударного вертолёта, РЛС контроля воздушного пространства и морской поверхности, РЛС обнаружения средств воздушного нападения, метеонавигационных РЛС. На внешних рынках семи стран (Индия, Китай, Сирия, Италия, Йемен, Эритрея, Мьянма) выполнена разработка и поставка БРЛС для модернизации многофункциональных самолётов-истребителей, радиолокационной аппаратуры и антенных устройств. В результате многолетних усилий ученых и конструкторов «Фазотрона» на предприятии реализован принцип разработки базовой унифицированной РЛС с модульной структурой построения, унификацией схемо-технических, конструкторских и технологических решений, что позволяет минимизировать затраты на техническое обслуживание в процессе эксплуатации. В радиолокационной технике Корпорации «Фазотрон-НИИР» внедрены следующие современные технологии: – разработка и производство РЛС с активной фазированной решеткой; – разработка и производство элементов АФАР с приемо-передающими модулями; – интеграция радиолокации, пассивной радиолокации и радиоэлектронного противодействия. Эти технологии обеспечивают такие новые функциональные возможности, как: бистатические радиолокационные системы – совместная работа элементов ордера кораблей с использованием каналов автоматического обмена информацией, распознавание классов и типов надводных и воздушных целей, режим картографирования, возможность определения географического местоположения корабля по береговой черте. Таким образом, достижения авиационной радиоэлектроники, перенесённые на морскую тематику, позволяют АФАР, образно говоря, перейти границу «воздух–море». Применение РЛС с АФАР для комплексов морского базирования Рассмотрим основные предложения Корпорации «Фазотрон-НИИР» по созданию корабельных радиоэлектронных систем. Возможность интеграции радиолокации, пассивной радиолокации и радиоэлектронного противодействия достигается за счёт размещения на единой частотно-пространственной апертуре антенны активных и пассивных элементов. Общий вид такой АФАР Х-диапазона, интегрированной с ФАР канала пассивной радиолокации и отдельно ФАР такого канала показаны на рис. 2а, 2б. Важным этапом в развитии корабельных РЛС является разработка РЛС ОСВН с АФАР L-диапазона – «Арбалет-Д» (рис. 3). Эта система предназначена для обнаружения и сопровождения на траектории полета опасных воздушных объектов (включая малоразмерные и высокоскоростные), приближающихся к защищаемому объекту, с выдачей информации, предупреждающей об опасном сближении, и целеуказания корабельному оружию, обеспечивающему безопасность. Весьма интересно и применение АФАР для малогабаритной РЛС, размещаемой на морских объектах (рис. 4). Такая система позволит обнаруживать надводные корабли на удалении до15 км, а воздушные цели – на удалении до200 кмс дальнейшей возможностью наведения корабельного оружия на выбранные объекты. Геометрия задачи обнаружения воздушной цели в бистатическом режиме корабельных РЛС показана на рис. 5. Эта задача решается с помощью двух кораблей. На одном из них РЛС с АФАР работает в активном режиме, обеспечивая подсвет цели. На другом – РЛС работает на приём сигнала, отраженного от цели. С помощью специальных каналов передачи данных между кораблями автоматически обеспечивается информационный обмен. Необходимые зоны ответственности информационных корабельных систем проиллюстрированы на рис. 6. Верхняя (надводная) полусфера охватывается многофункциональной интегрированной (МФИ) РЛС совместно с оптико-электронной системой (ОЭС). Нижняя (подводная) полусфера осматривается гидроакустическим комплексом (ГАК). Сформулируем основные требования, предъявляемые к МФИ РЛС корабельных радиолокационных комплексов: – освещение воздушной и надводной обстановки в сложных помеховых условиях; – выработка высокоточного информационного обеспечения для оружия (УРО, ЗРК и ЗАК); – обеспечение наведения кораблей и летательных аппаратов; – обеспечение обмена информацией и команд управления с кораблями и летательными аппаратами специального назначения. Для реализации указанных требований МФИ РЛС корабельного радиолокационного комплекса должна решить следующие основные задачи: – непрерывный контроль верхней полусферы для получения достоверной целевой и помеховой обстановки; – высокоточное информационное обеспечение систем управления корабельным оружием; – контроль результатов применения оружия; – анализ помеховой обстановки и расчёт зон обнаружения целей; – получение данных для корабельного поста управления наведением истребительной авиации; – государственное опознавание; – обеспечение взаимного обмена информацией между тактическими единицами; – совместная обработка информации от сопрягаемых корабельных систем и внешних источников (в том числе и сигналов, излучаемых РЛС противника). Решение перечисленных выше функциональных задач может быть осуществлено на основе структурной схемы МФИ РЛС, представленной на рис. 7. Эта структура состоит из двух самостоятельных активных радиолокационных систем – X и L-диапазонов и одного пассивного канала Х-диапазона. Основными элементами МФИ РЛС являются восемь АФАР (2х4 в каждом частотном диапазоне, по числу граней апертуры). Активные ФАР Х-диапазона интегрированы с ФАР пассивного канала. Основная обработка данных производится в единой вычислительной системе РЛС. На рис. 8а, 8б, 8в показаны варианты размещения на корабле РЛС с АФАР Х и L-диапазонов в составе многофункциональной интегрированной системы и зона обзора МФИ с АФАР в азимутальной плоскости. На рис. 8а в аксонометрии изображен корабельный радиолокационный пост в виде усеченной пирамиды. На четырёх гранях этой конструкции располагаются апертуры активных и пассивной РЛС Х и L-диапазонов. На рис. 8б показан состав РЛС с АФАР Х-диапазона: – приемо-передающий блок из 36 групповых приемо-передающих модулей (ГППМ); – детально один ГППМ из состава всего блока модулей; – показано также размещение блока ГППМ и канала пассивной радиолокации в конструкции АФАР. Как следует из рис.8в, зона обзора каждой РЛС, размещаемой на отдельной грани пирамиды, составляет в азимутальной плоскости ± 50°. Следовательно, в целом МФИ РЛС обеспечивает в этой плоскости круговой обзор 360° (4х100° с перекрытием между отдельными зонами обзора 40°). Приведём основные тактико-технические характеристики РЛС с АФАР Х-диапазона: – дальность обнаружения воздушной цели –350 км; – дальность обнаружения низколетящей цели – не менее 0,8 от дальности радиогоризонта при ЭПР цели –1 м2; – зона обнаружения, захвата и сопровождения цели (зона ответственности) по азимуту – 360°, по углу места – 90°; – время обзора зоны ответственности – не более 2 сек; – максимальная скорость цели – не менее 5 000 м/с; – точности выработки координат целей (СКО) в свободном пространстве по дальности – не более10 м, по скорости для не маневрирующих целей – 3 м/с, по углам – не более 0,6 т.д.; – время непрерывной работы – 24 часа; – максимальное волнение моря – 5 баллов; – высота расположения (центр АФАР) –25 м; – время наработки на отказ – до 10 000 ч. Многофункциональная интегрированная радиолокационная система входит в состав базового корабельного комплекса ситуационной осведомленности и обороны корабля, структурная схема которого показана на рис.9. Основными элементами комплекса являются: – информационные системы (датчики) в составе МФИ РЛС, ОЭС и ГАК. – оружие в виде УРО, ЗРК, ЗАК; – комплекс РЭП; – навигационная система; – система спутникового позиционирования (GPS); – широкополосная сеть распределенных данных по протоколу ТСРЛР. При этом МФИ РЛС состоит из РЛС с АФАР, включая РЛС L-диапазона, активную РЛС и канал пассивной радиолокации Х-диапазона, системы РТР и аппаратуры передачи данных. Информационные системы обмениваются данными с автоматизированной системой боевого управления (АСБУ), включающую распределенную вычислительную систему, автоматизированные рабочие места операторов и автоматизированное рабочее место группы управления. Суть планово-экономических предложений Корпорации «Фазотрон-НИИР» сводится к тому, что цикл создания первого образца РЛС с АФАР составляет 2 года с момента выдачи технического задания и выплаты аванса. Он включает этапы разработки конструкторской документации, создания опытного образца и предварительных испытаний. Имеющиеся в Корпорации «Фазотрон-НИИР» научно-технический потенциал, стендово-производственная база, коллектив разработчиков и управленцев позволяют решать задачи по созданию новой радиолокационной техники 6-го поколения и адаптации разработанных радиолокационных станций и комплексов к новым платформам. Корпорация «Фазотрон-НИИР» готова устанавливать РЛС с АФАР на корабли и летательные аппараты ВМФ.

milstar: CDL is a full-duplex, jam resistant spread spectrum, point-to-point digital link. The uplink operates at 200kbps-and possibly up to 45Mbps. The downlink can operate at 10.71 -45 Mbps, 137 Mbps, or 234 Mbps In addition; rates of 548Mbps and 1096Mbps will be supported. The CDL family has five classes of links: Class I - Ground-based applications with airborne platforms operating at speeds Mach 2.3 at altitude up to 80,000 ft. Class II - Speeds up to Mach 5 and Altitudes up to 150,000 ft. Class III - Speeds up to Mach 5 and Altitudes up to 500,000 ft. Class IV - Terminals in satellites orbiting at 750nm. Class V - Terminals in relay satellites operating at greater altitudes http://www.globalsecurity.org/intell/systems/cdl.htm Stoimost 1000 su-35 = 60 mlrd $ Stoimost 1000 RLS tipa Irbis -E - 2.5 mlrd $ Rassmotret wozmoznost schirokomastabnogo ispolzowaniaj w drugix vidax i roadx VS ... na platforme BMD,BMP ,Tanka ,Katera s RVV-AE ...i kak sredstwo kommunikazii s a. Sputnikom b. Prjamoj widimosti s samoletom /BPLA na 20 km -500 km c. Troposferno ( pri srednej moschnsot 5 kwt kak Irbis w diapazone X eto primerno 250 km )

milstar: Новейшие станции связи "Ладья" поступят в российские войска в этом году Армия и ОПК 11 марта, 9:06 UTC+3 Преимущества "Ладьи" заключаются в приемопередаче информации в ограниченной полосе частот с использованием одной рабочей частоты, высокой помехозащищенности, низком энергопотреблении МОСКВА, 11 марта. /ТАСС/. Минобороны РФ в этом году получит первые малогабаритные станции тропосферной связи "Ладья", которые отличаются повышенной помехозащищенностью. Об этом сообщил ТАСС источник в Объединенной приборостроительной корпорации (ОПК), входящей в госкорпорацию "Ростех". "Ладья" - первая отечественная радиорелейная тропосферная станция загоризонтной связи, обладающая малыми размерами. В интересах Минобороны РФ она прошла испытания в составе комплекса "Перспектива АСУ". Принято решение о ее поставке в войска в составе этого комплекса", - сказал собеседник агентства. Преимущества "Ладьи" заключаются в приемопередаче информации в ограниченной полосе частот с использованием всего одной рабочей частоты, высокой помехозащищенности, низком энергопотреблении и незначительной массе, гибкости и простоте в развертывании и эксплуатации. Источник также добавил, что в настоящее время принято решение о серийном производстве мобильного комплекса связи универсального назначения "Рубикон" на базе КАМАЗа. "Его разработка велась по заказу Минпромторга, но интерес к комплексу проявили и в российском военном ведомстве. Рассчитываем, что в будущем он также будет принят на снабжение", - отметил собеседник агентства. Станция связи "Ладья" и комплекс "Рубикон" разработаны Московским научно-исследовательским радиотехническим институтом (МНИРТИ).

milstar: СТАВКА НА РОССИЙСКОГО ПРОИЗВОДИТЕЛЯ Сравнивать возможности ЗРС «Бук-М2» и ЗРС семейства С-300П по борьбе с крылатыми ракетами имеет смысл потому, что только эти средства имеют специальные устройства, позволяющие поднимать на значительную высоту (20–30 м) антенные устройства стрельбовых радиолокационных систем для расширения зоны прямой видимости и увеличения тем самым дальней границы зоны поражения крылатых ракет, действующих на предельно малых высотах. По максимальной дальности поражения указанных целей возможности систем соизмеримы (ЗРС «Бук-М2» всего на 6% проигрывает ЗРС С-300ПМ2 по дальности поражения). Однако время развертывания вышек для подъема антенных систем в ЗРС С-300ПМ2 почти в 20 раз больше, а ее стоимость – в 7,8 раза выше, чем у телескопических подъемно-поворотных устройств ЗРС «Бук-М2». Кроме того, вышки, которыми комплектуется ЗРС С-300ПМ2, серийно производились и поставлялись из-за рубежа (г. Краматорск, Украина), а телескопические подъемно-поворотные устройства ЗРС «Бук-М2» производятся в России. ЗРС «Бук-М2» обеспечивает также эффективную борьбу с баллистическими ракетами тактического и оперативно-тактического классов и высокую вероятность их поражения опять-таки из-за реализации в системе режима распознавания типа целей и адаптации боевого снаряжения ЗУР. В ходе исследований опытные боевые стрельбы проводились не только по мишеням, имитирующим указанные баллистические ракеты, но даже по сравнительно малогабаритным реактивным снарядам РСЗО «Смерч». Принятая на вооружение ЗРС СД нового поколения «Бук-М3» обладает еще более высокими характеристиками. У нас в стране и за рубежом зенитные ракетные системы «Бук-М2» и «Бук-М3» аналогов не имеют. Еще не прошедшая испытаний ЗРС С-350 «Витязь» при борьбе с указанными выше целями, как показал анализ, априори будет иметь более низкие боевые возможности из-за особенностей заложенных в нее технических решений. Применение в системе защиты особо важных объектов ЗРС дальнего действия типа С-300ПМ2 «Фаворит» и С-400 «Триумф» также неперспективно и неоправданно, так как такие системы оказываются дорогостоящими, избыточными по ряду некритических характеристик парирования БГУ и в результате существенно проигрывают системам защиты на базе ЗРС «Бук-М2, – М3» по критерию «стоимость–эффективность». В связи с этим необходимо считать ЗРС СД «Бук-М2» базовым средством для построения высокоэффективных ССЗ особо важных объектов (районов) и целесообразно рассмотреть вопрос о расширении серийного производства ЗРС СД «Бук-М2» и оснащении им как войск ПВО Сухопутных войск (в модификации «Бук-М2»), так и войск ВКО (в модификации «Бук-М2-1»). В ближайшей перспективе эти функции должна выполнять ЗРС «Бук-М3» различных модификаций. На эту же систему необходимо в будущем возложить и функции борьбы с перспективными ракетно-планирующими системами и другими гиперзвуковыми средствами. БОЕВАЯ УСТОЙЧИВОСТЬ СПЕЦИАЛЬНЫХ СИСТЕМ ЗАЩИТЫ Система защиты особо важных объектов (районов) должна быть не только высокоэффективной, но и обладать высокой боевой устойчивостью при воздействии по ней специальных средств борьбы, назначаемых для ее поражения в начальный период боевых действий (например, специального эшелона подавления средств ПВО типа «Дикая ласка»). Сохранение боевых характеристик («выживаемость») должно обеспечить системе защиты надежное отражение последующих основных ударов СВКН и ВТО по прикрываемому объекту. Это наглядно подтвердила война в Югославии. Исследования и практические эксперименты показали, что достичь высоких показателей живучести однородной группировки ПВО и ее эффективности не представляется возможным. Создание так называемых смешанных группировок в классическом понимании, когда разнородные средства ПВО используются с разных позиций (позиционных районов) и управляются каждое со своего командного пункта, кардинально проблемы также не решает. Решение задачи выживаемости средств ПВО и систем обороны на их основе было найдено путем совместного использования этих средств в определенной комбинации, то есть создания на основе однородных (моногамных) ЗРК и ЗРС комбинированных (полигамных) разведывательно-огневых боевых средств (модулей). Полигамные боевые модули ПВО позволяют в разы увеличить устойчивость от ударов противорадиолокационных ракет (ПРР) и ВТО, сохранить способность системы защиты надежно оборонять прикрываемый объект от последующих основных ударов СВКН и в целом поднять эффективность их поражения в типовых налетах (таких, как по Ираку, Югославии, Ливии) до уровня 0,9 и более. Естественно, средства ПВО, входящие в состав полигамной системы обороны, должны функционировать в едином информационно-управляющем пространстве, в составе создаваемых ими же автоматизированных разведывательно-огневых группировок ПВО и управляться с единого командного пункта. Проведенные исследования, натурно-цифровое моделирование и ряд опытных боевых стрельб показали, что практически создать полигамную систему обороны наиболее целесообразно путем введения в состав ЗРС СД «Бук-М2» боевых машин ЗРК малой дальности «Тор-М2» (две БМ ЗРК «Тор-М2» вместо двух СОУ и двух ПЗУ ЗРС «Бук-М2») и доработки КП ЗРС «Бук-М2» для обеспечения боевой работы ЗРК «Тор-М2» в едином информационно-управляющем пространстве. Это позволяет существенно увеличить возможности самообороны полигамной системы при борьбе с ПРР типа «Харм», сохранить ее боеспособность и боевой потенциал. Расчеты и фрагменты натурных испытаний показывают, что полигамное (совместное) применение даже немодернизированных ЗРС «Бук-М1-2» и «Тор-М1» в едином информационно-управляющем пространстве позволяет повысить эффективность группировки более чем в 2,5 раза, а устойчивость от поражения противорадиолокационных ракет (ПРР) типа «Харм» – в 8–12 раз. Совместное боевое применение ЗРС и ЗРК новых модификаций «Бук-М2» и «Тор-М2» позволит достигнуть еще более высоких результатов и сохранить за такими средствами полигамного состава статус современного оружия до уровня 30–35-х годов. Кстати, этот вопрос еще в 1998 году докладывался начальнику Генерального штаба, был им одобрен, спланирован к реализации, но в последующем «успешно заболтан» военными чиновниками. Дальнейшее повышение боевых возможностей систем защиты критически важных объектов на базе ЗРС «Бук-М2»+«Тор-М2» возможно путем введения в ГСН ракеты ЗРС «Бук-М2» («Бук-М3») специального режима пассивной пеленгации постановщика активной помехи и самонаведения на него. Это предложение давно прорабатывалось и предлагалось к реализации у нас, но практически было сделано китайскими специалистами в импортированной из России ЗРС С-300ПМУ (китайское наименование ЗРС – FM-2000). Введение такого режима в ЗРС «Бук-М2, – М3» позволит резко изменить соотношение боевых потенциалов в пользу средств ПВО и сделать проблематичным применение активных помех с бортов нападающей пилотируемой и беспилотной авиации, так как сама помеха становится источником информации. В состав ЗРК «Тор-М2» (в ЗУР) возможно введение средств функционального поражения (взрывомагнитных генераторов). Это обеспечит эффективную борьбу с такими специфическими целями, как сверхмалые и малые беспилотные летательные аппараты (БЛА), действующими непосредственно над критически важными объектами в ближайшей оперативно-тактической глубине. Особо следует подчеркнуть, что проведенные исследования, натурно-цифровое моделирование и опытно-боевые стрельбы, о которых упоминалось выше, показали, что существенно повысить выживаемость систем защиты критически важных объектов при массированном воздействии по ним ПРР типа «Харм» и другого ВТО удалось только при введении в состав этих группировок БМ ЗРК «Тор – М2». МНОГОФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ В составе полигамной ССЗ особо важных объектов на базе ЗРС (ЗРК) «Бук-М2»+«Тор-М2» предполагается создать многофункциональный узел разведки и целеуказания (УРЦ). Систему связи и обмена данными УРЦ и ССЗ в целом иметь открытого типа, предусмотрев в ней «шлюзовые» средства получения информации от СПРН, региональных соединений и частей ВКО и ПВО военных командований. В состав ССЗ ОВО должны входить также средства, обеспечивающие создание помех и снижение эффективности навигационным системам космического базирования типа GPS и бортовым радиоэлектронным средствам пилотируемых и беспилотных СВКН (средства РЭБ). Ранее подразделения и части РЭБ, хотя и входили в состав Войск ПВО, применялись достаточно автономно, а из войск ПВО Сухопутных войск были изъяты, включены в состав Сухопутных войск как самостоятельный род войск и использовались также практически автономно. Это привело не столько к повышению эффективности группировок ПВО, сколько к необходимости решения дополнительно возникших задач по согласованию боевых действий. Вместе с тем возможности средств РЭБ по совместной борьбе с СВКН, особенно при скоординированных действиях совместно с ЗРС (ЗРК) ССЗ в едином информационно-управляющем пространстве оценены недостаточно, серьезных интегральных исследований по этому поводу не проводилось, хотя вклад средств РЭБ в повышение эффективности систем защиты ожидаем. Однако информация по составу и построению подсистемы РЭБ, в том числе СВКН, использующим данные системы GPS, достаточно конфиденциальна и может рассматриваться и обсуждаться при формировании тактико-технических заданий на конкретные системы защиты. Это же относится и к подсистеме защиты особо важных объектов от террористических актов и нападений наземного противника. Но не из-за конфиденциальности, а скорее из особенностей построения такой подсистемы защиты в зависимости от дислокации самого объекта прикрытия в том или ином регионе или в той или иной стране. Однако такая подсистема в системе защиты ОВО должна быть и функционировать в едином информационно-управляющем пространстве с другими средствами. НЕКОТОРЫЕ ИТОГИ В заключение необходимо еще раз акцентировать внимание на том, что в современных условиях создание и развертывание высокоэффективных специальных систем защиты особо важных (критических) объектов крайне актуально. Указанный подход как раз и ориентирован на асимметричное противодействие разработке и развертыванию дорогостоящих высокоточных систем оружия, крылатых ракет, в том числе дальнобойных, и беспилотных летательных аппаратов (боевых дронов) в ведущих зарубежных странах и возможному нанесению существенного (неприемлемого) удара по нашим СЯС и другим критически важным объектам. Предложения по созданию специальных систем защиты базируются на применении серийно выпускаемого вооружения и фактически не требуют значительных дополнительных финансовых и материальных затрат. Хотелось бы надеяться, что необходимость создания специальных систем защиты особо важных (критических) объектов (районов) будет оценена, предложения по ним востребованы и приняты к реализации как в наших Вооруженных силах, так и заинтересуют зарубежных клиентов, а построение, структура, основы боевого применения и функционирования ССЗ в составе войск ВКО и ПВО на ТВД – стать предметом дискуссии на страницах СМИ. http://nvo.ng.ru/armament/2015-03-20/12_attack.html

milstar: http://hi-tech.media/052017.html

milstar: Владимир Михеев © Концерн "Радиоэлектронные технологии" Концерн "Радиоэлектронные технологии" (КРЭТ) продолжает работы по созданию бортового радиоэлектронного оборудования и электромагнитного оружия для истребителя шестого поколения, который придет на смену Т-50 (ПАК ФА). О начале работ над этим самолетом в прошлом году объявил курирующий "оборонку" вице-премьер РФ Дмитрий Рогозин. КРЭТ, в частности, работает над созданием радиофотонного радара, СВЧ-пушек и лазерной защиты для будущих истребителей. Что будет представлять собой радар и на что способна система лазерной защиты самолета шестого поколения, какие экспериментальные образцы уже созданы в рамках этой программы, рассказал в интервью ТАСС советник первого заместителя гендиректора КРЭТ Владимир Михеев. — Владимир Геннадьевич, в прошлом году мы уже говорили о концепции истребителя шестого поколения и разработках КРЭТ по этой теме. На какой стадии сейчас находятся работы по созданию бортового радиоэлектронного оборудования (БРЭО)? — Продвижение в работах по созданию БРЭО для летательного аппарата шестого поколения есть. В том числе они касаются отдельных работ, выполняемых нами по заказу Фонда перспективных исследований. Например, мы работаем над бортовой радиолокационной станцией с радиооптической фотонной антенной решеткой. — В чем принципиальное отличие такого локатора от обычного? — В обычной радиолокационной станции (РЛС) сверхвысокочастотное (СВЧ) излучение генерируется электровакуумными или полупроводниковыми приборами. Коэффициент их полезного действия относительно низкий — 30–40%. Оставшиеся 60–70% энергии превращаются в тепло, которое нужно отводить системой охлаждения — если посмотреть даже на самую современную РЛС с активной фазированной антенной решеткой, то под 3D антенным полотном стоит толстенная охлаждающая плита. Большая часть энергии лазера будет преобразовываться в радиолокационную В новом радаре радиолокационный сигнал получается за счет преобразования фотонным кристаллом энергии когерентного лазера в СВЧ-излучение. У такого передатчика коэффициент полезного действия будет составлять не менее 60–70%. То есть большая часть энергии лазера будет преобразовываться в радиолокационную, в результате чего мы можем создать радар большой мощности. На фотонном передатчике также можно будет получить сверхширокополосное излучение, которое на обычной РЛС невозможно в силу физических принципов генераторных ламп и полупроводников. — И как далеко вы продвинулись в создании фотонного локатора? Есть ли экспериментальные образцы? — Радар прошел этап технического проектирования, получены результаты на макете. Сейчас в рамках научно-исследовательской работы (НИР) создается полноценный макет этой радиооптической фотонной антенной решетки, который позволит отработать характеристики серийного образца. Мы поймем, каким он должен быть, в каких геометрических размерах, на каких диапазонах и на какой мощности должен работать. Галерея 12 фото Видимые невидимки: самые известные самолеты-"стелс" В НИР на основе экспериментального образца построен и излучатель, и приемник. Все это работает, ведет локацию — излучаем СВЧ-сигнал, он отражается назад, мы его принимаем и обрабатываем, получаем радиолокационную картинку объекта. Смотрим, что нужно сделать, чтобы она была оптимальной. Отрабатываем технологию конкретных элементов — излучателя, фотонного кристалла, приемного тракта, резонаторов, построенных на модах "шепчущей галереи", и так далее. Серийный образец локатора сделаем, когда перейдем на этап опытно-конструкторской работы (ОКР), например, по заказу военного ведомства. — Какие преимущества даст новый радар истребителю шестого поколения? — Радиофотонный радар сможет видеть, по нашим оценкам, значительно дальше существующих РЛС. А так как мы будем облучать противника в беспрецедентно широком спектре частот, то с высочайшей точностью узнаем его положение в пространстве, а после обработки получим почти фотографическое его изображение — радиовидение. Это очень важно для определения типа: сразу и автоматически компьютер самолета сможет установить, что это летит, к примеру, F-18 с конкретными типами ракетного оружия. Мы будем облучать противника в беспрецедентно широком спектре частот За счет своей сверхширокополосности и огромного динамического диапазона приемника радиофотонный радар будет иметь большие возможности по защите от помех. Также, благодаря тому, что все системы истребителя шестого поколения будут интегрированными с точки зрения функций, фотонный радар дополнительно будет выполнять задачи радиоэлектронной борьбы (РЭБ), передавать данные и служить средством связи. — Как он будет примерно выглядеть? — Радиофотонный локатор не будет стоять отдельным модулем в носу самолета, это будет распределенная система. Нечто похожее можно наблюдать сегодня на истребителе пятого поколения Т-50 (ПАК ФА), радиолокационная станция которого работает в разных диапазонах и в разных направлениях. По факту это один локатор, но он разнесен по самолету. Получается порядка 3–4 разных РЛС, которые комфортно размещены по всему фюзеляжу и позволяют одновременно обозревать все пространство вокруг самолета. — Концепция создания истребителя шестого поколения в двух вариантах — беспилотном и пилотном — сохраняется? — Сохраняется, боевой самолет шестого поколения должен иметь две опции — быть и в пилотируемом варианте, и в беспилотном. Эти варианты будут отличаться и по внешнему виду, но, главное, по начинке. Беспилотный вариант будет иметь характеристики, которых нельзя достичь на пилотируемом самолете Если с любого существующего самолета мы уберем оборудование, которое нужно для обеспечения жизнедеятельности летчика, связи его с пилотажно-навигационным комплексом для индикации ему информации, передачи управляющих действий от человека к самолету, то высвободится огромное количество места и массы. Кроме этого, присутствие летчика сильно ограничивает летные возможности самолета: современному истребителю нельзя выходить за определенные ограничения по перегрузке, чтобы человек остался в живых, необходима защита от СВЧ-излучения приборов и оборудования, жесткого космического рентгеновского излучения на больших высотах и при суборбитальном полете. Поэтому беспилотный вариант будет иметь характеристики, которых нельзя достичь на пилотируемом самолете — большую маневренность, гиперзвуковую скорость, возможность выходить в ближний космос. — По-прежнему планируется, что они будут действовать в "стае"? Применение СВЧ-оружия для самолета с летчиком крайне проблематично из-за необходимости сохранять его жизнь — Да, мы говорим, что должен быть принцип "стаи": на один-два пилотируемых аппарата, будет приходиться группа беспилотников. И именно беспилотник сможет нести электромагнитное или, по-другому, СВЧ-оружие. Применение СВЧ-оружия для самолета с летчиком крайне проблематично из-за необходимости сохранять его жизнь. Если же мы будем создавать дополнительную систему защиты от собственного СВЧ-оружия, то еще больше потеряем места и запаса по массе. Кроме этого, даже самая сложная и эффективная защита может быть недостаточно эффективна. — Размеры "стаи" истребителей шестого поколения вы рассчитывали? — Смотрели разные варианты. Оптимальным мы считаем 20–30 беспилотных самолетов на один пилотируемый. В основном это связано с конечными возможностями человека по управлению. Как бы ему компьютер не помогал, человек способен выполнять не более 2–3 задач одновременно, на каждую он выделяет 3–4 беспилотника плюс горячий резерв. Вот и получаем 20, максимум 30 беспилотников. Хотя, конечно, когда мы эту "стаю" будем отрабатывать с реальными изделиями и реальными людьми, а не на моделях, наверняка численность стаи будет скорректирована. — Если вернуться к электромагнитному оружию, то какой-то прогресс за год был достигнут в этой области? Какие-то образцы испытывались? Мы разрабатываем систему защиты, чтобы система РЭБ или наша ракета не вышла из строя от применения СВЧ-оружия противника — СВЧ-оружие есть, испытания в лабораторных условиях идут постоянно. Например, можем сжечь какой-нибудь прибор, чтобы посмотреть какое количество электромагнитной энергии и как нужно приложить. Учитывая, что наши "вероятные друзья" ведут такие же исследования, мы разрабатываем еще и систему защиты, чтобы приемник, система РЭБ или наша ракета не вышла из строя от применения СВЧ-оружия противника. — Какие это системы защиты? — Можно поставить на входе принимающего устройства фильтры, задерживающие энергию, так, чтобы на датчик прошло только информативное излучение и другие полезные сигналы. Эти системы защиты должны быть перестраиваемые, причем программно, чтобы противник не имел возможности вычислить "окна" в фильтре. Эти исследования также нами ведутся. — Какое еще оружие, наряду с электромагнитным, будет на истребителях шестого поколения? — Любое. Один беспилотник в "стае" будет нести СВЧ-оружие, включая управляемые электронные боеприпасы, другой — средства радиоэлектронного подавления и поражения, третий — набор обычных средств поражения. Каждая конкретная задача решается разным вооружением. — Недавно Пентагон заявил об успешном применении лазерной пушки в Персидском заливе — они сбили беспилотник. У нас такое вооружение есть? Смотрите также "Луч смерти": преимущества, недостатки и перспективы лазерного оружия США и России — Мы проводили исследования в этом направлении, и я знаю, что у нас подобные системы есть, однако это не по линии КРЭТ. Мы занимаемся оптикой в интересах защиты. У нас уже есть лазерные системы защиты на самолетах и вертолетах, а сейчас мы говорим о работах в области силовых лазеров, которые будут физически разрушать головки самонаведения атакующих ракет. Грубо говоря, мы будем выжигать "глаза" ракетам, которые на нас "смотрят". Такие системы, естественно, будут ставится и на самолеты шестого поколения. — Когда такая интегрированная система — радар, СВЧ-оружие, лазерная защита и другое — может быть создана? Летчики всегда воспринимают беспилотную авиацию очень настороженно — Практическая работа наших НИИ и КБ с научно-исследовательскими институтами Минобороны России ведется уже сегодня. В остальном все зависит от того, будет ли востребована эта тематика нашим главным заказчиком. КРЭТ может это изобрести, показать, что в состоянии произвести, но потом у нас это не купят — не будет денег или другие приоритеты будут стоять. Еще нюанс: летчики всегда воспринимают беспилотную авиацию очень настороженно, потому что это покушение на их профессию, работу и мечту. — В инициативном порядке вы будете продолжать эти работы? — Мы понимаем, что все принципиально новое сначала воспринимается как бред, через какое-то время уже как "давайте посмотрим", а еще через 2–3 года — "почему до сих пор не сделано". Смотрите также Комплекс радиоэлектронной борьбы "Рычаг-АВ" Чем армия России может "ослепить" противника Поэтому мы продолжаем эти работы и проводим испытания, так как все равно рано или поздно это будет востребовано. Здесь самое главное — не отстать от наших "партнеров". — Обычные строевые самолеты типа Су-35 или МиГ-35 можно будет переделать в беспилотные? — Маловероятно, так как принцип построения самого беспилотника сильно отличается от принципов пилотируемого самолета. Создавать изначально два типа (пилотный и беспилотный) на одной базе — это оправдано, а переделать — нет. Хотя у нас есть большой опыт использования переделанных в беспилотники самолетов в качестве мишеней на испытаниях в рамках различных НИР и ОКР. Но там мы ставим над самолетом различные эксперименты, и от него требуется выполнение каких-то конкретных задач. — Какие еще системы разрабатываете в рамках шестого поколения? На новом истребителе будет также стоять мощная многоспектральная оптическая система, работающая в различных диапазонах — На новом истребителе будет также стоять мощная многоспектральная оптическая система, работающая в различных диапазонах — лазерном, инфракрасном, ультрафиолетовом, собственно оптическом, однако значительно превышающем видимый человеком спектр. С помощью нее мы также получим большое количество дополнительной информации об окружающем пространстве. — Какие наработки по искусственному интеллекту есть на сегодняшний день для беспилотного варианта истребителя шестого поколения? — Мы работаем над написанием программ, чтобы в будущем можно было создать полностью автономный беспилотник с искусственным интеллектом (ИИ), который сможет сам взлететь, добраться до места выполнения задачи и принять решение о ее выполнении. Мы на МАКС-2017 представили программный продукт, который позволяет нам исследовать отдельные особенности ИИ. Мы вводим в программу определенные условия, ставим для них задачи, запускаем виртуальные вертолеты и самолеты и смотрим, как они справляются. Пока не всегда удачно: летательные аппараты могут зависнуть над каким то районом, имеют трудности с идентификацией объектов, не хотят выполнять боевую задачу, неправильно докладывают. Но это уже отработка отдельных составляющих искусственного интеллекта. На этих ошибках виртуального мира мы набираемся опыта и обучаем дроны будущего. Беседовал Дмитрий Решетников Подробнее на ТАСС: http://tass.ru/opinions/interviews/4441543

milstar: Российские истребители пятого поколения Су-57 получили «умную обшивку». Антенны радиолокационной станции Н036 «Белка» теперь размещаются не только в носу машины (что позволяет видеть объекты в передней полусфере), но и распределены по поверхности самолета. По оценке экспертов, это обеспечит российскому истребителю расширенные возможности. Машина получит круговой обзор на сотни километров, и пилот будет своевременно предупрежден об опасности. Испытание боем Зачем в Сирию направили истребители Су-57 Традиционно антенны радара устанавливаются в носовой части истребителя в специальных обтекателях из радиопрозрачного материала. При этом станция плотно вписана в конструкцию самолета и не снижает его скорость и маневренность. Теоретически такое размещение РЛС обеспечивает обзор примерно на 180 градусов. Радар не видит противника, который атакует сзади или со стороны крыльев. В Научно-исследовательском институте приборостроения им. В.В. Тихомирова (НИИП, входит в концерн ВКО «Алмаз-Антей») «Известиям» заявили, что в ходе летных испытаний радиолокационная станция Н036 подтвердила заявленные параметры. Эта РЛС обеспечит превосходство российского самолета над любым противником, в том числе американскими истребителями пятого поколения: F-22 и F-35. — Характеристики радара подтверждены в основных режимах — при сканировании воздушного пространства и земной поверхности, — рассказал «Известиям» гендиректор НИИП Юрий Белый. — Мы сумели оценить недостатки предшествующих разработок и использовать последние научные достижения. Например, в части так называемой умной обшивки — когда активные фазированные антенные решетки разных диапазонов распределены по телу истребителя. «Белка» выполнена по технологии АФАР. Традиционную антенну заменяет так называемая антенная решетка — конструкция из сотен небольших элементов, которые самостоятельно излучают и принимают сигнал. Одна такая система размещена в носовой части Су-57, еще две — в предкрылках (отклоняемые поверхности на передних кромках крыла). Всего в конструкции Су-57 предусмотрено шесть радиолокационных систем, но их точная конфигурация не разглашается. При этом антенны комплекса работают в разных диапазонах. Школа для истребителя Что означает принятие Су-57 в опытно-боевую эксплуатацию По сравнению с традиционными локаторами, РЛС с АФАР имеют увеличенную дальность обнаружения целей, получают более точную картинку как воздушных, так и наземных объектов. Они также лучше защищены от радиоэлектронных помех. Поэтому «Белка» способна решать широкий спектр задач: поиск и обнаружение воздушных и наземных целей, применение оружия, навигация и картографирование. Как рассказал «Известиям» военный эксперт Алексей Леонков, распределение по поверхности Су-57 элементов РЛС обеспечит фактически полный обзор воздушной обстановки. — Летчик увидит всё, что вокруг него происходит, по всем направлениям, — отметил Алексей Леонков. — В современном воздушном бою, когда по самолету бьют и ПВО, и авиация противника, круговой обзор дает большое преимущество. На Су-57 компоненты РЛС, скорее всего, размещены в передней кромке крыла, сверху фюзеляжа и под ним, а также в хвостовом оперении. Использование антенн, работающих в разных диапазонах, практически сводит на нет все стелс-новации F-22 и F-35. Самолет Т-50 (прототип Су-57) совершил первый полет 29 января 2010 года. Летные испытания с бортовой РЛС с АФАР продолжаются с 2012 года. Ожидается, что серийные поставки Су-57 (эти машины в перспективе придут на смену Су-27) российским ВКС начнутся в 2019 году. На днях агентство «Интерфакс» со ссылкой на информированные источники сообщило о перебазировании двух Су-57 в Сирию и о возможности боевых испытаний истребителей в этой стране.

milstar: Бывший заместитель командующего войсками ПВО Сухопутных войск России генерал-лейтенант Александр Лузан, который неоднократно бывал в Сирии, не понаслышке знает о возможностях местной ПВО и хорошо знаком с ее структурой. Он особо подчеркнул, что в отражении ночного ракетного обстрела не участвовали российские средства ПВО в составе ВКС, потому что «налет шел не через зону поражения С-400, С-300В4 и «Панцирей», которые стоят в Хмеймиме и Тартусе».«В отражении налета участвовали сирийские ПВО. Использовалось два типа средств воздушного нападения: аэробаллистические ракеты, которые запускались с самолетов и крылатые ракеты Tomahawk, которые запускались и с самолетов, в том числе с бомбардировщиков B-1B, и с кораблей. Сбито то и другое», – сказал Лузан газете ВЗГЛЯД.Он отметил, что сирийское ПВО достаточно мощное. Главной ударной силой стал новейший многоканальный зенитный ракетный комплекс «Бук-М2», который Сирия успела купить у России незадолго до начала гражданской войны. До этого Дамаск располагал комплексом «Бук-М1». «Важный момент в том, что в состав «Бука-М»2 кроме самоходной многоканальной огневой установки входит радиолокатор подсвета и наведения (РПН), который оснащен высоко поднимаемой антенной – 22,5 метра за две минуты. Это расширяет зону поражения по крылатым ракетам, действующим на предельно малых высотах. Если все другие средства ПВО, не имеющие высоко поднятой антенны, могут стрелять по крылатой ракете, летящей на высоте 15 метров в радиусе 12-15 километров, то «Бук-М2» позволяет стрелять на дальность 40-42 километра. То есть за время подлета крылатых ракет к цели он может провести несколько циклов стрельбы. Каждая самоходная огневая установка «Бук-М2» обеспечивает одновременный обстрел четырех целей. В дивизионе шесть установок и РПН. За один залп дивизион способен сбить 24 крылатых ракеты, а так как зоны поражения вынесены вперед, то – 30-40 ракет», – пояснил Александр Лузан. Также перед началом гражданской войны Сирия приобрела у России «Панцири-С1». Этот комплекс не имеет высоко поднимаемой антенны, но обладает малым временем реакции, поэтому успевает эффективно обстрелять крылатую ракету на близкой дистанции. По оценке эксперта, именно «Панцири» и «Буки-М2» стали основными средствами уничтожения ракет противника.Более старые средства ПВО тоже не надо списывать со счетов, полагает Лузан. «По крылатым ракетам очень хорошо работает «прадедушка» «Бука-М2» – «Квадрат» – экспортное название советского зенитно-ракетного комплекса «Куб». Он был выпущен более 30 лет назад. Но весьма успешно применялся на Ближнем Востоке, особенно в Египте. Во время арабо-израильской войны именно «Квадратом», когда он был впервые туда поставлен, было уничтожено 78% самолетов Израиля. Американцы были вынуждены с дозаправкой по воздуху перегонять «Фантомы» в Израиль, чтобы как-то поднять его потенциал. Поэтому и на этот раз «Квадрат» мог быть использован», – считает Лузан. В свою очередь экс-командующий 4-й воздушной армией ВВС и ПВО Герой России генерал-лейтенант Валерий Горбенко согласен, что количеством перехваченных ракет сирийские защитники показали не просто высокий, а фантастический результат.«Эффективность удара (Западной коалиции) получается невысокой», – сказал Горбенко газете ВЗГЛЯД, добавив, что на дальних подступах работали сирийские «Буки», а также комплексы С-75 и С-200, «а ближе к целям наиболее эффективны были «Панцири».Лузан подчеркнул, что система ПВО считается сильной, если поражается более 60% целей, поэтому результат заслуживает всяческих похвал. В то же время Горбенко заметил, что такой высокий показатель эффективности был достигнут исключительно благодаря России, которая помогла Сирии восстановить зенитно-ракетные комплексы. Не меньше пользы принесли программы обучения сирийских ракетчиков. «А может, мы им где-то и помогли при пусках... Не знаю... Но наверняка подсказывали», – предположил генерал-лейтенант. Что касается использования С-200, то Лузан напомнил, что в Сирии было две группы дивизионов с этим оружием. «Но крылатая ракета – не цель для С-200. А носители крылатых ракет не входили в зону его поражения, поэтому если С-200 что-то там и сбила, то это одна-две цели», – указал бывший замкомандующего войсками ПВО Сухопутных войск России.Отметим, что средства ПВО не рассматривались западной коалицией как мишень, хотя при реальном конфликте именно эти системы становятся целью номер один. По мнению Александра Лузана, таким образом США и союзники лишь создали «большой шум», причем не в первый раз. «Был уже удар по сирийскому аэродрому. Тогда они запустили 58 «Томагавков». Из них 38 было сбито, а те, которые долетели до аэродрома, никаких ощутимых уронов не нанесли, потому что на следующий день с этого аэродрома начали взлетать самолеты. Поэтому и на этот раз преследуется пропагандистская цель», – сказал он. Лузан подчеркнул, что средства ПВО можно поразить противорадиолокационными ракетами типа AGM-88 HARM с дальностью пуска порядка 50-60 километров. «На такую дальность нужно подойти носителю, то есть самолету F-15 или F-16. Это значит подставить носитель под удар ПВО. Поэтому они пошли по самому простому пути: применили дальнобойные крылатые ракеты, для пуска которых не требуется входить в зону поражения средств противоракетной обороны. А дальше будь что будет», – пояснил Александр Лузан.Во время ночного обстрела бесценный опыт получили и российские ВКС. Находящиеся в Сирии российские С-300 и С-400 обнаруживали и брали на сопровождение западные ракеты, собирая информацию для анализа и изучения.«Учения, а тем более реальные боевые действия всегда несут познавательную пользу. Из этого можно сделать вывод, что нужно совершенствовать систему разведки средств воздушного нападения. Крылатые ракеты летят в боевую зону на предельно малых высотах, поэтому дальность обнаружения незначительная. Системы разведки есть, но они не объединены в единую систему. Нужно создавать единое информационно-управляющее пространство. Тогда никакие внезапности не будут страшны. Средство поражения всегда можно привести вовремя в состояние боевой готовности, а дальше, как в той сказке – оркестр делает свое дело», – призвал генерал-лейтенант. Он пояснил, что в Сирии был самолет дальнего радиолокационного обнаружения и управления А-50, но ни С-400, ни С-300В4 не имеют средств для приема информации по ненаправленным каналам связи от этого летающего радара. «И тот же Рудской должен знать об этом и делать определенные выводы», – полагает Александр Лузан. ##################################################### Напомним, в ночь на субботу президент США Дональд Трамп приказал нанести удар по Сирии. Об этом он заявил в специальном обращении к нации. К военной операции присоединились Великобритания и Франция. Удары, как заверил президент Франции Эммануэль Макрон, наносились по объектам сирийского правительства по созданию химоружия.Первые удары коалиции начались в четыре часа утра (по сирийскому времени, совпадет с московским). Они наносились с двух кораблей ВМС США из Красного моря, тактической авиацией над акваторией Средиземного моря, а также американским стратегическими бомбардировщиками B-1B из района Эт-Танф.США не стали уведомлять Россию об этом ударе, а страны НАТО были поставлены в известность за несколько часов до начала операции. Как рассказали в Пентагоне, США выбирали цели таким образом, чтобы минимизировать вероятность вовлечения в ситуацию российских военных. Как рассказал председатель Объединенного комитета начальников штабов США Джозеф Данфорд, первый удар был направлен на исследовательский центр, в котором «сирийские власти исследовали, испытывали и производили технологии химического и биологического оружия». Два других объекта – хранилище химоружия к западу от Хомса, и расположенный неподалеку от него склад оборудования для химического оружия. Объекты серьезно пострадали.Политическая реакция на происходящее в Сирии была ожидаемой. Российский посол в США Анатолий Антонов заявил, что удар не останется без последствий. «Худшие опасения оправдались. Наши предостережения не услышали. Реализуется заранее запланированный сценарий. Нам опять грозят. Мы предупреждали, что такие действия не останутся без последствий. Вся ответственность за них – на Вашингтоне, Лондоне и Париже», – сказал дипломат.Свое несогласие с произошедшим выразили и в конгрессе США. Сенатор Тим Кейн назвал действия Вашингтона незаконными, поскольку Трамп не получал разрешение на проведение военной операции. А сенатор Джек Рид назвал Трампа в сложившейся ситуации загнанным в угол.



полная версия страницы