Форум » Дискуссии » А-135 ,SBX,MMW,Haystack,Pave Paws ... » Ответить

А-135 ,SBX,MMW,Haystack,Pave Paws ...

milstar: А-135 – единственная в мире боедежурящая система противоракетной обороны http://vko.ru/DesktopModules/Articles/ArticlesView.aspx?tabID=320&ItemID=434&mid=3087&wversion=Staging In 2003, I received a declassified Strategic Air Command document that showed how the United States reacted when the Soviet Union built a limited missile defense system back in the late 1960s. The response was overwhelming: A nuclear strike plan that included more than 100 ICBMs plus an unknown number of SLBMs to overwhelm and destroy the Soviet interceptors and radars. Based on the declassified information, two colleagues and I estimated in an article in the Bulletin of the Atomic Scientists that the total strike plan involved approximately 130 nuclear warheads with a total combined yield of some 115 megatons. Here is how the SAC historian described the plan: http://www.fas.org/blog/ssp/2007/07/targeting_missile_defense_syst.php “To ensure the penetration of the ICBM force, the Soviet ABM system would be attacked first. Minuteman E and F and Polaris missiles would first hit the Hen House early warning radars, and their Tallin system defenses [SA-5 SAM, ed.]. Then the Dog House radar and the Triad system around Moscow would be attacked. More than 100 Minuteman would be involved in the ABM suppression.” Source: U.S. Strategic Air Command, History of U.S. Strategic Air Command January-June 1968, February 1969, p. 300. Excerpts (pp. 300-306) available here (pdf, 0.8 MB). The Soviet ABM system back then consisted of about fifteen facilities, including eight launch sites around Moscow with a total of 64 nuclear-tipped interceptors, half a dozen SA-5 launch complexes (later found not to have much ABM capability) near Leningrad (now St. Petersburg), and at least three large early warning radars. Each of these surface facilities were highly vulnerable to the blast effect from a single nuclear warhead, so the large number of ICBMs was mainly needed to “suppress” (overwhelm) the interceptors. In the late 1980s, the Soviets upgraded they system by moving 32 remaining interceptors at four sites into underground silos (see Figure 2) and adding 68 shorter-range nuclear-tipped interceptors at five new sites closer to Moscow. This hardened and dispersed the interceptors, requiring U.S. planners to upgrade their strike plan, which #################################################################### probably ballooned to more than 200 warheads (although with less total yield due to more accurate missiles with ##################################################################### less powerful warheads).

Ответов - 66, стр: 1 2 3 4 All

milstar: Skoree kombinacija sledujuschix reschenij 1. KSP -loznie celi ,aerozoli 2. Minimizacija EPR ,IR 3. MARV ,viskoie yskorenija do 200 g 4 .Attaka w gruppe ,samopodriv odnogo BB pri attake protivoraketoj Schumowaja temperatura rezko wozrastaet Tak w tablizehttp://www.gdsatcom.com/Antennas/Data_Sheets/655-0008B_13.1m.pdf raznie znachenija schumowoj temperaturi ot 30 K do 90 K Esli prosto nawesti antennu na solnze -to schumowaja temperatura srazu stanet 6000 ° K ------------------------------------------------------------------------------------------------------ + wisokaja ionizacija atmosferi 5. Manewrirowanie na linii Kaymana -118 km Ygol mesta RLS na distanzii 1000 km i wisote celi 118 km budet blizok k 0 po srawneniju s yglom 30° dalnost RLS pri prochix rawnix padaet w neskolko raz ( 94 ghz w 11-12 raz) Pochti wse ykazanie wozmoznosti powischenija chansow preodolenija PRO swjazanni ####################################################### s reservom zabrasiwaemoj massi ####################### Orientirovochno Massa BB 17-18 kg ,Moschnsot 1-1.5 kt ( Bch art snarjada vniitf) 147 kg -200 kt - SRAM-2 130 kg -170 kt ALCM pri moschnostjax 100-200 kt ,padenei moschnsot w 10 raz sootw . sniteniju radiusa porazeniaj w 2 raza w 2 raza ,radius w 1.226 raza

milstar: Thertez chassi Topolja/Yars . Wes 44 tonn .Max .nagruzka -80 tonn [BR]http://www.avtomash.ru/pred/mzkt/mzkt79221_100.htm Pri schirine protivoraket 53T6,GBI porjadka 1 metra ,raketi Midgetman -1.02 metra dline 53t6 -10 metrow ,GBI -12 metrow ? ,Midgetman -14 metrow masse 53t6 -10 tonn,GBI -12 tonn ,Midgetman 16.78 tonni celesoobrazno razrabotat varianti -2 kontjnera s 2 raketami i 3 kontejnera s 3 raketami ################################################### Variant s 3 raketami ( sootw. raschirenie schassi s 3.4 metra do 4.5 ) budet bolee ystojschiw k wozdejstwiju jadernogo wzriva (perevorachiwaniju) ################################################# Pri nalichii smeschannogo boekomplekta battarei ################################# 2 RLS ( 8 ghz i 35 ghz) 12 tjagachej s 24 -36 kontejnerami ,i z kotorix 6-9 ICBM , Auftragtactic protivnik budet winuzden ynictozit ne tolko RLS no i wse PU (w tom chisle pustie) - 14 tjagchej pri nalichii boekomplekta tolko s protivoraketami ynichtozenie tolko RLS( 2 tjagacha) wedet k polnoj poteri boesposobnosti battarei

milstar: Так выглядит прибалхашская полупустыня в районе площадки № 35 10-го испытательного полигона ПРО (Сары-Шаган) Фото: Михаил ХОДАРЕНОКПОЛИГОНЫ Многоканальный стрельбовый комплекс «Амур-П» МКСК в настоящее время является базовым средством 10-го испытательного полигона ПРО для отработки текущих и перспективных задач противоракетной обороны Учитывая важность и первоочередную значимость работ по совершенствованию противоракетной обороны, в 1974 г. было принято решение о развертывании и испытаниях на полигоне Сары-Шаган многоканального стрельбового комплекса (МКСК) «Амур-П» в интересах создания системы ПРО г. Москвы 2-го поколения – системы А-135, способной решать задачу противоракетной обороны от сложных баллистических целей. 15 января 1970 г. создано ЦНПО «Вымпел», одной из основных задач которого стала разработка проекта новой системы ПРО А-135. В 1971 г. под руководством главного конструктора А. Г. Басистова институтами ЦНПО «Вымпел» с участием МКБ «Факел» и ОКБ «Новатор» был разработан проект на систему А-135 и МКСК «Амур». В нем предусматривалось создание трех МКСК «Амур», расположенных на расстоянии 600–800 км от Москвы, и трех комплексов ближнего перехвата в непосредственной близости от Москвы. ############################################################## NIOKR ochen bolschie ,sootwetstwenno ix nado razdelit na seriju 16 kompleksom minimum na territorii Rossii ############################# При такой структуре системы А-135 зоны поражения противоракетами дальнего перехвата отодвигались на 800–1200 км от Москвы. При этом резко сокращался наряд противоракет для поражения МБР ############################################### Eto wrjad li Preimuschestwo -mozno ispolzowat neskolko serij Esli werojatnost perexwata odnoj raketoj -0.5 to 4 serij po 2 - 0.996 ################## Stoimost 8 protivoraket 8*20 mln $ = 160 mln $ nesoizmerimo mensche chem wozmoznij yscherb ot podriwa 10 kt w plotnozaselennom kwartale Moskwi w lutschee wremja Gibel 50 000 chel srazu i ekonomicheskij yscherb bolee 100 mlrd $ Esli 8000 Protivoraket sposbni perexwatit 1000 yabch s koef 0.996 ( iz 1000 proidut PRO tolko 4) to eto ochen xoroscho ################# Na tekuschij den Tolko attaka USA ili kombinirowannaja USA/NATO smozet preodalet podobnoe PRO и повышалась радиационная безопасность столицы от ядерного взрыва своих противоракет. http://vko.ru/DesktopModules/Articles/ArticlesView.aspx?tabID=320&ItemID=439&mid=2891&wversion=Staging


milstar: частности, В. И. Марков демонстративно приютил в своем НИИ группу разработчиков РЛС «Программа-2», прожект которой был мною забракован при попытке его авторов пристроиться в околопроблемной кормушке под вывеской ПРО, спекулируя на действительно важной проблеме селекции баллистических целей по способу Ходжи Насреддина, касающемуся шаха и его ишака. http://militera.lib.ru/memo/russian/kisunko_gv/20.html

milstar: Но никто не мог ответить на вопрос – какие именно признаки широкополосного сигнала отличают боеголовки от ложных целей и как эти признаки могут быть из него извлечены. http://militera.lib.ru/memo/russian/kisunko_gv/20.html Po kinematike dwizenija -- ves ,centr tjazesti istinnoj celi i loznoj otlichaetsja ################################################## Plotnaost Atmosferi na wisotax 200 km krajne nizkaya ,no ne 0 a skorosti wisokie 7 km/sek polosa signala 2000 mgz -razreschajuschaja sposobnost 0.10 metra mozet bit realizowanna na 35 ghz Krome togo powischenie diapazona (pri rawnoj polose signala) w 10 raz s 9 ghz ( X band) do 94 ghz ywelichiwaet skorost raspoznowanija celi po wrascheniju w 10 raz Nedostatki - raspr. 35 ghz ,94 ghz pri yglax elevazii blizkix k 0 Experiment RLS Warloc NRL -padenie w 11-12 raz na yglax elevazii 0.4 grad po srawneniju s 30 grad http://www.ll.mit.edu/publications/journal/pdf/vol13_no1/13_1overview.pdf http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2ballisticmissiledefense.pdf http://web.mit.edu/annualreports/pres08/2008.14.00.pdf Continuing development of coupled-cavity TWTs allowed Varian to produce 35-GHz transmitter tubes with 50-kW peak power and 2-GHz bandwidth. Figure 18 illustrates the configuration of the 35- GHz beam-waveguide system. Figure 19 is a photograph of the 95-GHz scalar or ridged horn feeds. These very small horns launch an almost perfect Gaussian beam. After refocusing with the mirrors of the beam-waveguide system, excellent illumination of the 13.7-m MMW radar antenna is achieved. The contrast in the size of these feeds and those of ALTAIR is a reminder of the very broad spectral band that is covered by the KREMS radars. ... The superwideband compressive receiver program completed a second measurement campaign aboard an Air Force aircraft. The highlight of this test was the demonstration of full real-time processing of threat signals across a 4.0-GHz instantaneous bandwidth. The compressive receiver met or exceeded aggressive performance targets for sensitivity, dynamic range, and frequency accuracy.

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Wideband Radar for Ballistic Missile Defense and Range- Doppler Imaging of Satellites Bandwidths that are 10% of the radar’s carrier frequency are reasonably straightforward to implement (e.g., 500 MHz at C-band or 1000 MHz at X-band). In particular, effective discrimination against strategic threats requires a means of dealing with potentially large numbers of small decoys and penaids at high altitudes well beyond the level where atmospheric deceleration becomes a discriminator between heavy and lightweight objects. It was recognized that discrimination radars with wide bandwidth and the corresponding fine range resolution would be able to measure the lengths of objects, and quickly identify and eliminate radar targets substantially smaller than warheads from consideration as threats. Furthermore, the high operating frequencies required for widebandwidth radars would be of added benefit over Wideband Observables ################# The distinguishing characteristic of a wideband radar is its fine range resolution, which is inversely proportional to the operating bandwidth. ###################### Such a radar system has a range resolution that is a fraction of the linear dimensions of its intended targets. These radars generally operate at high frequencies, where widebandwidth waveforms are easier to implement. With range resolution fine enough to encompass a target in a significant number of resolution cells, ########################### it becomes possible to distinguish individual scattering centers, which occur at regions of physical discontinuity. A ballistic missile warhead, for example, exhibits radar reflections from the nose, body joints, and base, as well as other points of discontinuity such as antenna ports. #################################### To observe radar reflections from smaller discontinuities, the radar must be able to operate at short wavelengths, since discontinuities much smaller than a wavelength will in general produce low-intensity reflected signals from the target. In addition, a short wavelength is desirable for observing curved surfaces, because when the wavelength is short compared to the radius of curvature, the radar reflection is dominated by specular reflection, thus allowing a finer determination of the size and shape of corresponding surfaces. For an object that reenters the atmosphere and generates an ionized wake, fine range resolution allows examination of the wake in thin slices, which results in the separation of reflections from different atmospheric phenomena around the hard body, such as the plasma layer at the nose or leading surface, the plasma sheath around the body, the boundary layers, the shock fronts, and the development of turbulent regions at the rear of the body. Such observations are of great value in deriving information about a target’s physical parameters, structural and heat-shield materials, and the function of reentering objects, all of which aid the discrimination process of distinguishing warheads from decoys. In the above scenario, the radar produces a one-dimensional range profile of the target. However, if the target is rotating about an axis that has a component perpendicular to the radar line of sight, such that some scattering centers are moving toward the radar with respect to others that are moving away from it, we can construct a one-dimensional cross-range profile for each range cell through Doppler processing of the radar returns. The range and cross-range profiles can then be combined to produce a two-dimensional range-Doppler image of the complete body. We can analyze this image to yield body size, body shape, the position and nature of scattering centers, the presence of internal reflections, the rotation rates, and the rotation axes for the object. In addition, these images can provide valuable information on the nature of the materials used in constructing the body, and information about antennas, apertures, and interior structures of such an object. Three-dimensional images can be generated from the two-dimensional images by using a technique called extended coherent processing. With this technique a series of range-Doppler images are collected over a time period when the target presents different look angles to the radar. The series of range-Doppler images is then coherently processed and referenced to a particular look angle. The resulting three-dimensional images produce even greater detail of target features than the two-dimensional range-Doppler images. The image of the damaged Skylab orbiting laboratory shown in Figure 1 is an example of this kind of processing. More recent advances in signal processing hardware and computational speed have led to the generation and measurement of wideband observables in real time. These observables, which can be used for real-time BMD discrimination, include determination of body length, feature identification, and radar images. Doppler processing and coherent phase-derived range techniques permit real-time indications of macro- and micro-dynamic body motion, which may offer clues to mass and mass distribution. Advances in wideband phased-array radar design now make it possible to exploit wideband observables on multiple objects in a missile complex.

milstar: канун Нового, 1970 года замминистра В. И. Марков созвал руководящий состав подведомственных ему организаций Минрадиопрома и обратился к присутствующим со следующей речью: – Я собрал вас, чтобы объявить приказ министра Валерия Дмитриевича Калмыкова о создании Центрального научно-производственного Объединения (ЦНПО) «Вымпел» по тематике ПРО, СПРН и контроля космического пространства. В него войдут следующие организации: ОКБ «Вымпел» с его филиалами, Радиотехнический институт (директор Александр Львович Минц), НИИ ДАР (и. о. директора Франц Александрович Кузьминский), КБ радиоприборов (директор Георгий Георгиевич Бубнов), Днепропетровский радиозавод (директор Леонид Никифорович Стромцов), головная организация ЦНПО – научно-тематический центр (НТЦ) выделяется из ОКБ «Вымпел»; Тринадцатое Главное управление Минрадиопрома реоганизуется в Спецуправление в составе НТЦ. Генеральным директором ЦНПО «Вымпел» и начальником НТЦ министр назначил меня, заместителем генерального директора по научной работе – Григория Васильевича Кисунько. Первым взял слово академик Александр Львович Минц. – Категорически возражаю, – сказал он. – Этот приказ ставит меня в положение административного диктата со стороны Григория Васильевича Кисунько по научным вопросам, в которых наши взгляды принципиально противоположны. На это Марков ответил репликой: «Значит, нам придется подобрать другого директора РТИ». http://militera.lib.ru/memo/russian/kisunko_gv/20.html

milstar: Резким контрастом нашей дырявой изнутри и снаружи сети надгоризонтных РЛС ПРО – СПРН является созданное в США сплошное круговое радиолокационное поле дециметрового радиодиапазона, четырежды эшелонированное в направлении на СССР: Бимьюс, Кобра Дейн, ПАР, Пэйв Пос. Это поле является устойчиво живучим и гарантирует получение и выдачу высокоточной достоверной информации о характере и структуре налета МБР на территорию США с любого направления. http://militera.lib.ru/memo/russian/kisunko_gv/20.html И все же после моего письма на имя Л. Н. Зайкова от 24 февраля 1986 года эту тему бесшумно спустили на тормозах, и было упразднено ее головное подразделение. Но 2 апреля 1993 года подспудно, в каких-то секретных дебрях НИИ, возглавляемого Р. Авраменко, И. Омельченко и А. Басистовым, вылупилась новая СВЧ-утка: в России изобретено «плазменное» оружие ПРО и президент России в Ванкувере предложит США принять участие в совместном с Россией эксперименте «Доверие» на противоракетном полигоне США.

milstar: Глава двадцать первая Нет повести печальнее на свете, чем о советской противоракете. Система А-35 успешно прошла госиспытания и была принята в эксплуатацию двумя очередями: первая очередь – в июне 1972 года, вторая – в 1974 году (подключение к объектам первой очереди и сдача в эксплуатацию системы в целом). Окончание госиспытаний первой очереди было отмечено рапортом XXIV съезду КПСС за подписями министров Гречко, Калмыкова и Дементьева с указанием фамилий генеральных конструкторов Кисунько и Грушина. При этом в акте госкомиссии по результатам испытаний системы «Алдан» была зафиксирована вероятность поражения системой назначенной ей баллистической цели – 0,93. Столь высокая эффективность стрельбы не была достигнута ни в одной из ранее испытывавшихся систем ПВО. http://militera.lib.ru/memo/russian/kisunko_gv/21.html

milstar: При этом в акте госкомиссии по результатам испытаний системы «Алдан» была зафиксирована вероятность поражения системой назначенной ей баллистической цели – 0,93. Столь высокая эффективность стрельбы не была достигнута ни в одной из ранее испытывавшихся систем ПВО. Awtor storonnik dostizenija bolee realnoj verojatnosti 0.5 ####################################### Dlja odnoj boegolowki TRdient D-5 i odnoj protivoraketi tipa 53t6 ############################################## bez "podswetki " atmosferi yadernim wzriwom Esli budet dostignut 0.5 dlja odnoj raketi to dlja 4 serij po 2 (wsego 8) budet 0.996 dlja 1000 yabch budet neobxodimo 8000 protivoraket tipa 53t6 i dalnego perexwata tipa GBI (no s yabch) t.e. massoj po 10-14 tonn (po 4 stuku na schassi Topol-M ,gruzopodemnost 80 tonn) Wopros perexwata w slushae podriwa serii yabch w kosmose i atmosfere -otwet neyasen ######################################################### kak i perexwat KR S-400 ,S-300V w sluschae podriwa serii yabch ##############################################

milstar: Пройдет три года, и в Кремле В. В. Кузнецов будет вручать государственные награды участникам модернизации системы А-35. И один из награжденных – Николай Николаевич Родионов – заявит при получении награды: «Очень жаль, что среди нас нет Григория Васильевича Кисунько – изобретателя и генерального конструктора системы А-35М». Да, обошли меня наградой; но самой ценной, самой высокой наградой для меня всегда будут слова генерал-полковника Юрия Всеволодовича Вотинцева – бывшего командующего войсками противоракетной и противокосмической обороны, сказанные им в интервью газете «Правда» 10 декабря 1992 года: «Наибольший вклад в создание ПРО внесли Кисунько и Мусатов. Но в самый напряженный период работы над системой, из-за интриг в Минрадиопроме, они были от дела отстранены». http://militera.lib.ru/memo/russian/kisunko_gv/21.html

milstar: http://www.arrl.org/files/file/Technology/tis/info/pdf/0210028.pdf 1. Schumowaja temperatura Luni wische chem neba Since the beamwidth of the 3 meter dish at 10 GHz (0.7 degree) is nearly as small as the subtended angle of the Moon (about 0.5 degree), most of the noise that the antenna sees is generated by the Moon, which is significantly hotter than the background cold sky. ########################## 2. Schumowaja temperatura 11.1 metra antenni w diapazone X -55-74 grad K ot ygla elevazii 21 metra w X-band 62 °K -80° K http://www.gdsatcom.com/Antennas/Data_Sheets/655-0026B_11m.pdf http://www.gdsatcom.com/Antennas/Data_Sheets/655-0069B_21m.pdf Pri nawedenii na Solnze 6000 K ###################### Yrowen Minimalno prinimaemaego signala po moschnosti ywelichiwaetsja primerno na 20 db ili w 100 raz ############################################################### esli cel naxoditsja w predelax diametra Solnza ################################# 3. Pri jadernom wzriwe rjadom s celju ,ochewidno chto dalnost RLS ponizitsja po rjadu prichin ########################## schumovaja temperatura ,ionizacija ,EMI &

milstar: Reception Reports Since our initial QSO we have been heard by G3WDG, RW3BP, VE7CLD and AA6IW. RW3BP has been hearing both Barry and I almost every time we have been on. All stations have been using dishes that range from a 2.4 m off set fed to a 4.5m prime focus unit, and are using preamplifi ers of approximately 2 dB noise fi gure. Just as the EME experience at 10 GHz has shown, moon noise at 24 GHz limits the ultimate receiver sensitivity, #################################################################### so that a large dish and a “really good” preamplifi er do not produce significantly better received signals. ################################################################### http://home.planet.nl/~alphe078/extra/eme_l07.pdf “Small” receive stations should be able to hear signals, however in order to be heard above the moon noise, the transmit ERP cannot be reduced. W otlichii ot Luni schumovaja temperatura Solnza -6000 ° K ------------------------------------------------------------------------- Yadernogo wzriwa sootwetstwenno --------------------------------------------- attaka w gruppe i podriw seriii yabch dlja glsuchenija RLS ... Th e local elevation angle of the moon was found to be very important. ############################################## padenie dalnosti RLS Warloc 94 ghz pri yglax elevazii 0.4° w 11-12 raz po srawneniju s yglom elevazii 30°

milstar: AN/SPG-62 Fire Control Radar The Raytheon/RCA AN/SPG-62 is an I/J-Band fire control radar on Aeigis-class ships operates as a component of the MK-99 Fire Control System (FCS). FCS controls the continuous wave illuminating radar, providing a very high probability of kill. The Mk-99 Fire Control System also controls the target illumination for the terminal guidance of Ship Launched SM-2 Anti-Air Missiles. The AN/SPG-62 is a continuous wave, illumination radar for the Standard SM-2 missile as part of the Mark 99 fire-control system in the Aegis air defense missile system. The Aegis ships have three (DDG-51) or four (CG47) Mk 99 missile control directors that use the SPG-62 illumination channel to provide radar reflections for Standard missiles. Physical resemblance to the AN/SPG-52. The SPY-1 radar system detects and tracks targets and then points the SPG-62 toward the target, which in turn provides illumination for the terminal guidance of SM-2 missiles. In order to track a target a very narrow beam of RF energy is needed. The narrower the beam, the more accurately it is possible to tell whether there is one target or multiple targets (this is called radar resolution). This narrow beam radar is normally a second radar that works with a primary search or track radar. The AN/SPG-62 illuminating radar works as a second radar with the AN/SPY-1 series radar. Antenna Dimensions: 7 ft 5 in (2,286 mm) diameter Band: I-J (8-20 GHz) Peak Power: 10 kW (average) http://www.globalsecurity.org/military/systems/ship/systems/an-spg-62.htm http://en.citizendium.org/wiki/File:Antenna_suite_on_CG-60_Normandy_AEGIS_cruiser.jpg The AN/SPG-62 is a continuous wave, mechanically steered, terminal guidance illumination radar for the RIM-156 Standard SM-2 missile. These missiles use semi-active radar homing for their final guidance, so the Mark 99 fire control subsystem of AEGIS time-shares the illumination radars. Other functions of the Mark 99 system include loading, arming and launching the Standard missiles using the vertical launch system. Three AN/SPG-62 antennas are visible, at far left and second from rightPrimary search and midcourse guidance comes from the AN/SPY-1 phased-array radar, Only as the missile is making final approach to its target does there need to be AN/SPG-62 energy on the target, so the AEGIS battle management system can have more missiles flying against more targets than it has illuminators. Burke-class and Kongo-class destroyers have three and Ticonderoga-class cruisers have four AN/SPG-62's. Spanish F-100 frigates, versions of which are used by Australia, Norway and South Korea, have two. These radars, made by Raytheon, operate in the I/J bands with a peak power of approximately 10 kilowatts. Obviously, the specific operating frequencies change frequently and are classified, for reasons of protecting the missile guidance system from the target's electronic countermeasures (i.e., its self-protection electronic attack capabilty http://en.citizendium.org/wiki/SPG-62

milstar: -------------------------------------------------------------------------------- Rather than using the existing Dual-Band Radar design in new ships, however, the “Air and Missile Defense Radar” (AMDR) aims to fulfill future CG (X)/ DG-51 Flight III cruiser needs through a new competition. It could end up being a big deal for the winning radar manufacturer, and for the fleet… Rather than extending or modifying the existing Dual Band Radar combination used on its DDG-1000 Zumwalt Class, the “Air and Missile Defense Radar” (AMDR) aimed to fulfill these need through a re-opened competition. The resulting radar will have 3 components: •The AMDR-X radar will provide horizon search, precision tracing, missile communications, and final illumination guidance to targets. •The AMDR-S radar will provide wide-area volume search, tracking, Ballistic Missile Defense (BMD) discrimination, and missile communications. While CG (X) and its DDG-51 Flight III replacement are both “blue water” ships, requirements do call for defense against very low observable/very low flyer (VLO/VLF) threats in heavy land, sea, and rain clutter, where S-band has some advantages. •The back-end Radar Suite Controller (RSC) will perform all coordination, ensuring that the radars work well together. The US Congressional GAO estimates the cost of the AMDR program at $2.3 billion for R&D and $13.4 billion for procurement, a total of $15.7 billion. ############################################################################################## In order to reach those figures, however, AMDR will need to seize a larger opportunity. DDG-77 USS O’Kane (click to view full)That requirement for adjustable size is the key to AMDR’s larger opportunity. If the adjustments can be taken far enough, it could give the Navy an opportunity to add or retrofit AMDR to some of its 60+ serving Arleigh Burke Class ships, ############################################################ DDG-1000 Zumwalt Class destroyers, or later carriers of the CVN-78 Gerald R. Ford Class. ############################################################# An October 2008 report from the right-wing Heritage Foundation draws on other sources to note that weight shifts can also create issues: ”...SPY-1E [active array] radar could affect the stability of the upgraded Arleigh Burkes because the radar’s phased-array pan-els weigh more than the panels of the earlier SPY-1 radar, which it will replace. While the SPY-1E’s weight is concentrated more in the panels, freeing more space below deck,[78] this greater weight would be added to the ship’s superstructure. Combined with the DDG-51’s relatively narrow hull width and short length, this could cause stability problems, particularly when sailing in rough weather.” http://www.defenseindustrydaily.com/AMDR-Competition-The-USAs-Next-Dual-Band-Radar-05682/ Nor are they devoid of X-band or ballistic missile defense experience. Their L-Band AN/TPS-59 long range radar has been used in missile intercept tests, and is the only long range 3D Radar in the Marine Air-Ground Task Force. It’s related to the AN/TPS-117, which is in widespread service with over 16 countries. Then, too, the Patriot missile’s MEADS successor system’s MFCR radar will integrate an active array dual-band set of X-band and UHF modules, via a common processor for data and signal processing. SBX-1, Pearl Harbor (click to view full)Raytheon goes into AMDR with experience developing the existing Dual-Band Radar’s Radar Suite Controller and SPY-3 X-band radar, along with the dual X/S band system that will equip the Cobra Judy (USNS Observation Island) Replacement vessel used to track missile launches and tests around the world. Phased array radars for wide-area air and ballistic missile defense are another strong point. Raytheon builds the AN/TPY-2 X-band radar used by the land-based THAAD missile system, the 280 foot high X-band array on the floating SBX missile defense radar, and the large land-based ballistic missile Upgraded Early Warning Systems like the AN/FPS-108 Cobra Dane and AN/FPS-115 PAVE PAWS. On the S-band side, the firm builds the S-band transmitters for Lockheed’s SPY-1 radar. Unsurprisingly, Raytheon personnel who talked to us said that: ”... leveraging concepts, hardware, algorithms and software from our family of radars provides a level of effectiveness, reliability and affordability to our proposed AMDR solution…. The challenge for all the competitors will be to deliver a modular design. The requirements demand that the design be scalable without significant redesign…. A high power active radar system requires significant space not only for the arrays themselves but also for the power and cooling equipment needed to support its operation. Finding space for additional generators and HVAC plants can be quite challenging for a backfit application. That is why power efficiency is a premium for these systems.” Northrop Grumman was a less obvious contender, despite its enviable record making advanced AESA and phased array radars for use on aircraft of all types and sizes, and land-based systems like the US Marines’ Ground/Air Task Oriented Radar (G/ATOR). In subsequent discussions, he stressed that Northrop Grumman has shipboard radar experience, too. They’re the prime contractor for the AN/SPQ-9B track-while-scan X-band radar, the SPS-74 used to detect submarine periscopes, and navigation radars. On a less visible note, the firm has been working under several CRAD programs from 2005 to the present, targeted at technology demonstrations, system risk reduction, and new integration techniques for advanced S-band shipboard radars. Finally, the firm has a partnership with Australia’s CEA Technologies, which is developing an advanced AESA X-band (CEAMOUNT) and S-band (CEAFAR) radar set for Australia’s ANZAC class frigate upgrade. What does this team see as important? “The ability to scale up to a potential future cruiser or down to a DDG-51 variant is fundamental to the Northrop Grumman radar architecture. Size, weight and power (SWaP) of the radar system are the key drivers…. Minimizing the radar impact is key to an affordable surface combatant solution. We are focused on not just the radar technology, but to minimize the ship impact while allowing for scalable growth in the future. We are working closely with various elements in the Navy to address the ship impact of large AESA radars on the entire ship.”

milstar: Aegis Radar http://www.defenseindustrydaily.com/The-US-Navys-Dual-Band-Radars-05393/ http://media.defenseindustrydaily.com/images/ELEC_CG-60_AEGIS_Antenna_Suite_lg.jpg 1.AN/SPS-49 Very Long-Range Air Surveillance Radar Antenna Parameters: Parabolic Reflector stabilized for roll and pitch 7.3m/24 ft wide, 4.3m/14.2 ft high Gain 28.5 dB Scan rate 6 or 12 rpm The AN/SPS-49(V) radar operates in the frequency range of 850 - 942 MHZ. In the long range mode, the AN/SPS-49 can detect small fighter aircraft at ranges in excess of 225 nautical miles Transmitting Power: 360 kW peak 280 kW specified peak power 12-13 kW average power http://www.globalsecurity.org/military/systems/ship/systems/an-sps-49.htm 2. Passive phase array with diametr 3.7 metr 3.1 -3.45 ghz AEGIS ships have a more effective radar at their disposal, however: the AN/SPY-1B/D/E passive phased array S-band radar can be seen as the hexagonal plates mounted on the ship’s superstructure. SPY-1 has a slightly shorter horizon than the SPS-49, and can be susceptible to land and wave clutter, but is used to search and track over large areas. It can search for and track over 200 targets, providing mid-course guidance that can bring air defense missiles closer to their targets. Some versions can even provide ballistic missile defense tracking, after appropriate modifications to their back-end electronics and radar software. Lockheed Martin’s SPY-4 Volume Search Radar (VSR) is an S-band active array antenna, rather than the SPY-1’s S-band passive phased array. The Navy was originally going to use the L-band/D-band for the DBR’s second radar, but Lockheed Martin had been doing research on an active array S-band Advanced Radar (SBAR) that could potentially replace SPY-1 radars on existing AEGIS ships. A demonstrator began operating in Moorestown, NJ in 2003. That same year, its performance convinced the Navy to switch to S-band, and to make Lockheed Martin the DBR subcontractor for the volume search radar (VSR) antenna. It also convinced Lockheed Martin to continue work on the project as a complete, integrated radar, now known as “S4R”. S-band offers superior performance in high-moisture clutter conditions like rain or fog, and is excellent for scanning and tracking within a very large ############################################################################################### volume. ###### While Lockheed Martin makes the VSR antenna, the dual-band approach means that Raytheon is responsible for the radars’ common back-end electronics and software. 3 ... The 3rd component is the AN/SPG-62 X-band radar “illuminators,” which designate targets for final intercept by air defense missiles; DDG-51 destroyers have 3, and CG-47 cruisers have 4. During saturation attacks, the AEGIS combat system must time-share the illuminators, engaging them only for final intercept and then switching to another target.

milstar: Launches of SLBMs from some areas of the North Atlantic could still be detected only by the Don-2N radar in Moscow. http://iis-db.stanford.edu/pubs/20734/Podvig-S&GS.pdf

milstar: Intercepting an incoming warhead in a test is not an unusually difficult achievement if you have missiles capable of entering the upper atmosphere and good tracking radars. The Nike-Zeus system intercepted 10 out of 14 warheads in 1962, although this was with nuclear warheads. ################################################################################ 5 The first successful non-nuclear intercept of a dummy Minuteman ICBM warhead in flight was on 10 June 1984 by an infra-red guided Kinetic Kill Vehicle (KKV), which unfurled a 4.2 metre metal net containing 36 spines.6 http://www.ausairpower.net/APA-NOTAM-140110-1.html

milstar: COBRA DANE is a national technical intelligence sensor, located on the island of Shemya, Alaska, at Eareckson AF Station. In First deployed in 1977, the AN/FPS-108 radar operates in the 1215-1400 MHz band using a 29m phased array antenna. -------------------------------------------------------------------------------------------------------------------------------------------- The primary mission is to track and collect data on foreign intercontinental ballistic missile (ICBM) and submarine launched ballistic missile (SLBM) test launches to the Kamchatka impact area and the broad ocean impact areas in the Pacific Ocean. The metric and signature data collected support START 2 and INF treaty monitoring, and scientific and technical intelligence efforts. http://www.fas.org/spp/military/program/track/cobra_dane.htm First deployed in 1977, the Cobra Dane is an AN/FPS-108 radar that operates in the 1215-1400 MHz band using a 29m phased array antenna. During the Cold War, its primary mission was to track Soviet ballistic missile warheads aimed at the North Pacific. At present, it is used to track and collect data on Russian ICBMs and SLBMs test launches directed toward the Kamchatka impact area and the North Pacific, although it is also capable of tracking targets in space at 40,000 km. ############ In addition, the Cobra Dane radar is used to verify, safeguard, and monitor the reductions of nuclear arms under the Strategic Arms Reduction Treaty (START).(2) In 2004, hardware installation and software upgrades to the Cobra Dane radar were completed. To test these upgrades, the AN/FPS-108 radar tracked a foreign missile launch and participated in an integrated ground test. Until September 2005, however, the upgraded Cobra Dane radar had not participated in a flight test event as the primary fire control radar. http://missilethreat.com/missiledefensesystems/id.15/system_detail.asp

milstar: AN/SPQ-11 COBRA JUDY The Cobra Judy radar is a ship-based radar program based on the US Naval Ship Observation Island [T-AGM-23]. COBRA JUDY operates from Pearl Harbor and is designed to detect, track and collect intelligence data on US. Russian, and other strategic ballistic missile tests over the Pacific Ocean The AN/SPQ-11 shipborne phased array radar is designed to detect and track ICBM's launched by Russia in their west-to-east missile range. The Cobra Judy operates in the the 2900-3100 MHz band. The octagonal S-band array, composed of 12 288 antenna elements, forms a large octagonal structure approximately 7 m in diameter. and is integrated into a mechanically rotated steel turret. The entire system weighs about 250 tonnes, stands over forty feet high. In 1985 Raytheon installed an 9-GHz X-band radar, using a parabolic dish antenna to complement the S-band phased array system. The five story X-band dish antenna is installed aft of the ship's funnel and forward of the phased array. The X-band upgrade was intended to improve the system's ability to collect intelligence data on the terminal phase of ballistic missile tests, since operation in X-band offers a better degree of resolution and target separation. The S-Band and X-Band radars are used to verify treaty compliance and provide support to missile development tests by the Ballistic Missile Defense Organization. The radars are also being used for research and development work in areas not accessible to ground-based sensors. http://www.fas.org/irp/program/collect/cobra_judy.htm



полная версия страницы