Форум » Дискуссии » А-135 ,SBX,MMW,Haystack,Pave Paws ... » Ответить

А-135 ,SBX,MMW,Haystack,Pave Paws ...

milstar: А-135 – единственная в мире боедежурящая система противоракетной обороны http://vko.ru/DesktopModules/Articles/ArticlesView.aspx?tabID=320&ItemID=434&mid=3087&wversion=Staging In 2003, I received a declassified Strategic Air Command document that showed how the United States reacted when the Soviet Union built a limited missile defense system back in the late 1960s. The response was overwhelming: A nuclear strike plan that included more than 100 ICBMs plus an unknown number of SLBMs to overwhelm and destroy the Soviet interceptors and radars. Based on the declassified information, two colleagues and I estimated in an article in the Bulletin of the Atomic Scientists that the total strike plan involved approximately 130 nuclear warheads with a total combined yield of some 115 megatons. Here is how the SAC historian described the plan: http://www.fas.org/blog/ssp/2007/07/targeting_missile_defense_syst.php “To ensure the penetration of the ICBM force, the Soviet ABM system would be attacked first. Minuteman E and F and Polaris missiles would first hit the Hen House early warning radars, and their Tallin system defenses [SA-5 SAM, ed.]. Then the Dog House radar and the Triad system around Moscow would be attacked. More than 100 Minuteman would be involved in the ABM suppression.” Source: U.S. Strategic Air Command, History of U.S. Strategic Air Command January-June 1968, February 1969, p. 300. Excerpts (pp. 300-306) available here (pdf, 0.8 MB). The Soviet ABM system back then consisted of about fifteen facilities, including eight launch sites around Moscow with a total of 64 nuclear-tipped interceptors, half a dozen SA-5 launch complexes (later found not to have much ABM capability) near Leningrad (now St. Petersburg), and at least three large early warning radars. Each of these surface facilities were highly vulnerable to the blast effect from a single nuclear warhead, so the large number of ICBMs was mainly needed to “suppress” (overwhelm) the interceptors. In the late 1980s, the Soviets upgraded they system by moving 32 remaining interceptors at four sites into underground silos (see Figure 2) and adding 68 shorter-range nuclear-tipped interceptors at five new sites closer to Moscow. This hardened and dispersed the interceptors, requiring U.S. planners to upgrade their strike plan, which #################################################################### probably ballooned to more than 200 warheads (although with less total yield due to more accurate missiles with ##################################################################### less powerful warheads).

Ответов - 66, стр: 1 2 3 4 All

milstar: All of this happened during the Cold War and many things have changed, but the basic motivation for targeting a limited missile defense system then was the same as today: The Soviet ABM system was entirely defensive and couldn’t threaten anyone (to paraphrase a characterization frequently use by U.S. and NATO officials to justify their missile defense plans today), but it could disturb the main ICBM attack on Moscow and military facilities downrange. That made it a top-priority target. And even though U.S. planners suspected that the system was not very efficient, ######################################################################### they committed about 10 percent of the entire ICBM force to destroy it. ######################################################## To the extent the Russia ABM is operational, U.S. nuclear strike plans probably still target it today. http://www.fas.org/blog/ssp/2007/07/targeting_missile_defense_syst.php

milstar: 1.Diapazon A-135 .Dlja schirokoj publiki sekret . W USA dawno izwestno - RLS mnogokratno wkljuchali Predpolozitelno X-band 2. Esli eto X-Band 8 ghz ,to eto nepolnaja PFAR isxodja iz raspolozenie h/2 /dlja polnoj X band 8 ghz na 1 kw.metr neobxodimo 2750 elementow , D antenni 18 metrow ,Ploschad odnoj antenni celi sootw 250 kw .metrow 4 antenn 1000 kw .metrow .Dolzno bit okolo 3 mln ) Количество управляемых вибраторов составляет более 250000. Диапазон работы станции - сантиметровый. В РЛС реализована полностью цифровая обработка сигналов (ЦОС). Инициатором и организатором работ по внедрению ЦОС в РЛС ПРО “Дон-2Н” являлся ее главный конструктор. Объем аппаратурного комплекса разработанной РЛС - более тысячи единиц шкафной аппаратуры, сотни тысяч излучателей ФАР и множество другой аппаратуры - определялся высокими требованиями по энергетическим характеристикам, зоне действия, многофункциональному применению и необходимостью использования крупноапертурных ФАР. [BR]http://www.rti-mints.ru/pro.htm T.e. bokowie lepestki xuze ,a podawlenie bokowix lepestkow kak w S-300v ( 3 nebolschix antenni wnizu naprotiv PFAR) na foto ne widno 3. Инициатором и организатором работ по внедрению ЦОС в РЛС ПРО “Дон-2Н” являлся ее главный конструктор. Sloka Strech processing ... s 10 bitnimi sowetskimi AZP (bili takie ) Strech processing - Verojatno tak ze kak i w USA Linkoln laboratory MMW radare 1990 goda -10 bit AZP na 20 mgz s polosoj signala 5 mgz Ochen prilichno / krome wixoda godnix Sowetskix 10 bit AZP/ ############ 4. 80 megawatt impulsnoj - nejasno skolko srednej . Irbis -E 5kwt sredenj/20 kwt impulsnoj 0.9 metra diametrom 0.01 kw.metra EPR na 90 km , 2.5-3 kw.metra EPR na 350 km Predpolozitelno Radar Duty 5-10% (Warlock 94 ghz NRL -10 %) T.e Don-2N vozmozno 5 megawatt srednej (esli werno soobschenie polkownika Xodarenka o 80 megawatt impulsnoj) Dlya sprawki Yachik 2.4 metra *2.4 metra *3.6 metra = 200 kwt sredenej X Band Haystack radar Dlya stazionarnoj konstrukzii realizuemo i 1000 yaschikow (200 megawatt srednej )

milstar: Сква́жность (в физике, электронике) — один из классификационных признаков импульсных систем, определяющий отношение периода следования (повторения)импульса к его длительности. Величина, обратная скважности и часто используемая в англоязычной литературе, называется коэффициентом заполнения (англ. Duty cycle). Таким образом, для импульсного сигнала справедливы следующие соотношения: , где S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса http://ru.wikipedia.org/wiki/%D1%EA%E2%E0%E6%ED%EE%F1%F2%FC


milstar: В одном из совместных с США экспериментов по возможности отслеживания малоразмерных космических объектов (так называемого “космического мусора”) МРЛС “Дон-2Н” успешно сопровождала специально запущенные шары диаметром 5 и 10 см на дальностях 1500 - 2000 км. Pri yglax elevazii 30 ° i bolsche ? Pri yglax elevazii 0.4 ° dalnost padaet w neskolko raz http://www.rti-mints.ru/pro.htm

milstar: http://www.boeing.com/defense-space/space/gmd/gallery/photos1.html Country: USA Basing: Sea In Service: Exp. 2005 Details The Sea-Based X-Band Radar (SBX) consists of an advanced radar system mounted on a floating platform. Once operational, it will be able to track, discriminate, and assess long-range ballistic missiles as part of the Missile Defense Agency’s Ground-Based Midcourse Defense (GMD) system. It will be located just off the coast of Alaska and will be linked to 10 ground-based interceptor missiles deployed at Fort Greely in Alaska and Vandenberg Air Force Base in California. SBX, in many ways, is the offspring of the Ground Based Radar-Prototype (GBR-P), which has served as the fire control radar for flight and intercept tests at the Reagan Test Site since 1999. On August 1, 2002, MDA awarded a $31 million contract to Boeing to oversee development of its new sea-based radar system. At present, Boeing is building the floating platform, Raytheon is developing the X-band radar, and the Harris Corporation is providing systems engineering, integration services, and satellite communications equipment. The SBX team has applied many of the lessons learned from the GBR-P program, resulting in significant risk reduction and cost efficiency. The entire project will cost approximately $900 million. MDA had initially planned to build a ground-based X-band radar, but decided to go with the greater range and mobility of a sea-based system. SBX’s floating platform, a modified oil-drilling vessel, is being designed for exceptional stability in high winds and storms. Measuring 240 feet wide and 390 feet long, the vessel will include a power plant, bridge and control rooms, living quarters, storage areas, and enough floor space and infrastructure to support the X-band radar. The platform’s mobility will allow MDA to relocate SBX to accommodate future “layers” of the Ballistic Missile Defense System. The X-band radar itself, which will sit on top of the floating platform, will be the largest, most sophisticated phased array, electro-mechanically steered X-band radar in the world. It will consist of thousands of antennae driven by transmit/receive (T/R) modules. T/R modules are multi-functional circuits that can transmit, receive, and amplify signals. In the X-band radar, they will provide the full fire control sensor functions for the Ground-Based Midcourse Defense system, including search, acquisition, tracking, discrimination, and kill assessment. The radar will be capable of distinguishing between objects as close as 15 centimeters. After the radar has been mounted on the vessel, the entire structure will measure over 280 feet from the keel to the top of the radar’s dome, displacing 50,000 tons of water. To put this in perspective, SBX will be roughly the size of two football fields. A commercial C-band satellite will establish communications between the platform and shore facilities. It will take between 50 and 55 people on the platform and an addition 30 to 40 on shore to maintain the system. Once operational, SBX will use its finely focused beam to track an incoming ballistic missile through space during the 20 or so minutes that it is outside the Earth’s atmosphere. The radar will transmit detailed tracking information to GMD’s command unit, which will calculate a fire mission and launch its Ground-Based Interceptor (GBI) missile. As the GBI streaks towards the threat, SBX will distinguish between warheads and decoys, ensuring the interceptor’s accuracy. The radar will continue to relay updated targeting information after GBI launches its Exoatmospheric Kill Vehicle (EKV), which will proceed on a collision-course trajectory toward the target. SBX will determine whether or not the EKV destroyed the warhead, and prepare to support a second launch if necessary. The one drawback of SBX is that X-band radars, like all other radars, cannot see over the curvature of the earth, known as the “radar horizon.” SBX’s ability to detect incoming missiles (and discriminate between warheads and decoys) depends completely on where the radar is located in relation to the incoming missile. Thus, the closer to rouge nations and terrorist-sponsoring states that SBX is positioned, the better the odds that GMD will be able to complete a successful interception. On August 16, 2003, MDA announced its decision to deploy the SBX platform just off the coast of Adak, Alaska. Located on the western end of the Aleutian Islands, Adak is ideal for SBX because it will allow the system extra time to collect data on incoming threats from Asia. MDA considered sites in Washington and California as well, but concluded that locations on the continental U.S. would not give GMD enough time to intercept its targets. Adak served as a base of operations during World War II, housing 6,000 naval personnel and their families. Its existing Army infrastructure includes a 7,900-foot runway, a deep-water port that is ice-free year-round, two piers, a 22 million-gallon fuel storage tank, and barracks. The X-band radar is currently being constructed in Brownsville, Texas. Once completed, it will be installed on the oil-drilling platform, which is being built in Norway. Sea trials will take place in the Gulf of Mexico before SBX moves to its primary base in Adak, Alaska. MDA plans for the SBX platform and radar to be fully integrated and deployed by December 2005. [BR]http://missilethreat.com/missiledefensesystems/id.58/system_detail.asp Eto nepolnaja AFAR X-BAnd s koef. zapolnenija primerno 10 % 68 000 GaAS MMIC Moschnost mozet bit 1 megawatt srednej . Nize 16 watt GaN sertifizirowannij dlja woennogo ispolzowanija ( est 101 watt Fujitsu 8 ghz GaN ,no neyasno s sertifikaziej dlja DoD) http://www.triquint.com/prodserv/more_info/proddisp.aspx?prod_id=TGA2517

milstar: Odnim iz wozmoznix variantow razwitija A-135 - Mnogodiapazonnie RLS k primeru X i 35 ghz W 35 ghz mozno realizowat polosu signala 3500 mgz -eto razreschajuschaja sposbnost 71 mm bez extrapoljazii polosi ( chitat nomera na maschinax 10 mm) Mozno otlichit loznie celi ot istinnix Antenni -cassegranowskie -kak Lincoln MMW radar ( Dopolnit A-135 16 cassegr antennami po 200 kwt srednej i dimatrom 13.5-18 metrow) ili PFAR (ferriti na 35 ghz est ,no polosa signala mozet bit 1000 mgz) W SSSR bili sereznie dostizenieja w oblasti RLS 35 ghz Moschnsot RLS Ruza 1 megawatt impulsnoj ,ploschad 40 kw.metrow ( ili equivalnet D= 7.2 metra) [BR]http://www.radiofizika.ru/services/radiolocation/mmdv-ruza/ РЛС «Руза» первая мощная станция миллиметрового диапазона волн с фазированной антенной решеткой, разработана на предприятии совместно с кооперацией в 1989 году, для отработки радиотехнических средств и совершенствования систем ракетно-космической обороны. РЛС работает в диапазоне 35 ГГц и построена по пассивной схеме на передачу и активной – на прием. Антенна содержит 120 крупногабаритных излучателей с ферритовыми фазовращателями. Площадь апертуры составляет около 40 м2. Двухканальный передатчик РЛС работает на гироклистронах. ФАР имеет малый сектор электронного сканирования луча, обеспечивающий быстрый поиск в секторе около 1-го кв.градуса. Фазированная антенная решетка установлена на поворотном устройстве, обеспечивающем перемещение луча по всей верхней полусфере. Дальность действия до 2000 км. Станция обеспечивает возможности наблюдения объектов в условиях повышенной ионизации атмосферы. Экспериментально полученные точности составляют: разрешающая способность по угловым координатам – 4,5 угл.мин., точность измерения угловых координат объектов наблюдения – 12 угл.сек. http://www.radiofizika.ru/services/radiolocation/mmdv-28h6/ РЛС с широким сектором электронного сканирования разработана на основе модулей пассивной ФАР с плотным расположением элементов в апертуре. Она выполнена по отражательной схеме на основе ферритовых фазовращателей, содержит около 3600 фазовращателей, расположенных в углах гексагональной сетки с шагом 1,1λ. Сектор электронного сканирования луча составляет ±25°. Излучатели в виде диэлектрических стержней формируют секторную. ДН.

milstar: http://www.redstar.ru/2011/04/29_04/1_04.html бывший начальник Главного штаба РВСН генерал-полковник Виктор Есин. по его словам, входят порядка 700 ядерных боевых частей для ракет-перехватчиков системы противоракетной обороны А-35, развёрнутой вокруг Москвы, а также для зенитных ракетных систем С-300 и С-400. http://www.vniitf.ru/index.php?option=com_content&view=article&id=109%3A2009-04-23-05-15-23&catid=44%3A2009-04-02-03-52-23&Itemid=258&lang=ru Боевая часть зенитной ракеты разработана в двух вариантах - с неядерным и с ядерным зарядами. Ядерный вариант предназначен для борьбы с групповыми воздушными целями. Nikakix sokraschenij -neobxodimo ywleichit chislo takticheskix Yabch

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Wideband Observables The distinguishing characteristic of a wideband radar is its fine range resolution, which is inversely proportional to the operating bandwidth. Such a radar system has a range resolution that is a fraction of the linear dimensions of its intended targets. These radars generally operate at high frequencies, where widebandwidth waveforms are easier to implement. With range resolution fine enough to encompass a target in a significant number of resolution cells, it becomes possible to distinguish individual scattering centers, which occur at regions of physical discontinuity. A ballistic missile warhead, for example, exhibits radar reflections from the nose, body joints, and base, as well as other points of discontinuity such as antenna ports. To observe radar reflections from smaller discontinuities, the radar must be able to operate at short wavelengths, since discontinuities much smaller than a wavelength will in general produce low-intensity reflected signals from the target. In addition, a short wavelength is desirable for observing curved surfaces, because when the wavelength is short compared to the radius of curvature, the radar reflection is dominated by specular reflection, thus allowing a finer determination of the size and shape of corresponding surfaces. For an object that reenters the atmosphere and generates an ionized wake, fine range resolution allows examination of the wake in thin slices, which results in the separation of reflections from different atmospheric phenomena around the hard body, such as the plasma layer at the nose or leading surface, the plasma sheath around the body, the boundary layers, the shock fronts, and the development of turbulent regions at the rear of the body. Such observations are of great value in deriving information about a target’s physical parameters, structural and heat-shield materials, and the function of reentering objects, all of which aid the discrimination process of distinguishing warheads from decoys. In the above scenario, the radar produces a one-dimensional range profile of the target. However, if the target is rotating about an axis that has a component perpendicular to the radar line of sight, such that some scattering centers are moving toward the radar with respect to others that are moving away from it, we can construct a one-dimensional cross-range profile for each range cell through Doppler processing of the radar returns. The range and cross-range profiles can then be combined to produce a two-dimensional range-Doppler image of the complete body. We can analyze this image to yield body size, body shape, the position and nature of scattering centers, the presence of internal reflections, the rotation rates, and the rotation axes for the object. In addition, these images can provide valuable information on the nature of the materials used in constructing the body, and information about antennas, apertures, and interior structures of such an object. Three-dimensional images can be generated from the two-dimensional images by using a technique called extended coherent processing. With this technique a series of range-Doppler images are collected over a time period when the target presents different look angles to the radar. The series of range-Doppler images is then coherently processed and referenced to a particular look angle. The resulting three-dimensional images produce even greater detail of target features than the two-dimensional range-Doppler images. The image of the damaged Skylab orbiting laboratory shown in Figure 1 is an example of this kind of processing. More recent advances in signal processing hardware and computational speed have led to the generation and measurement of wideband observables in real time. These observables, which can be used for real-time BMD discrimination, include determination of body length, feature identification, and radar images. Doppler processing and coherent phase-derived range techniques permit real-time indications of FIGURE 1. Simulated radar image (actual radar images of satellites remain classified) of the NASA Skylab orbiting laboratory, with a damaged solar panel on one side and a partially deployed solar panel on the other macro- and micro-dynamic body motion, which may offer clues to mass and mass distribution. Advances in wideband phased-array radar design now make it possible to exploit wideband observables on multiple objects in a missile complex.

milstar: ALCOR, shown in Figure 2, was the first highpower, long-range, wideband field radar system http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Figure 2(b) shows the forty-foot ALCOR antenna and its pedestal inside the radome. ALCOR operates at C-band (5672 MHz) with a signal bandwidth of 512 MHz that yields a range resolution of 0.5 m. (The ALCOR signal was heavily weighted to produce low range sidelobes with the concurrent broadening of the resolution.) Its widebandwidth waveform is a 10-„}sec pulse linearly swept over the 512-MHz frequency range. High signal-tonoise ratio of 23 dB per pulse on a one-square-meter target at a range of a thousand kilometers is achieved with a high-power transmitter (3 MW peak and 6 kW average) and a forty-foot-diameter antenna. Cross-range resolution comparable to range resolution is achievable with Doppler processing for targets rotating at least 3Ѓ‹ in the observation time. The pulserepetition frequency of this waveform is two hundred pulses per second. ################ Processing 500-MHz-bandwidth signals in some conventional pulse-compression scheme was not feasible with the technology available at the time of ALCORЃfs inception. Consequently, it was necessary to greatly reduce signal bandwidth while preserving range resolution. This is accomplished in a timebandwidth exchange technique (originated at the Airborne Instrument Laboratory, in Mineola, New York) called stretch processing [4], which retains range resolution but restricts range coverage to a narrow thirtymeter window. In order to acquire and track targets and designate desired targets to the thirty-meter wideband window, ALCOR has a narrowband waveform with a duration of 10.2 ѓКsec and bandwidth of 6 MHz. This narrowband waveform has a much larger 2.5-km range data window. The ALCOR beamwidth is 5.2 milliradians, or 0.3Ѓ‹. This beamwidth, together with a high-performance antenna mount, enables ALCOR to produce

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf The Haystack Long-Range Imaging Radar After the facility was completed in 1978, operations were supported by the U.S. Air Force. The Haystack system has a number of features that rendered this option extremely attractive. It has a large diameter (120 ft) antenna needed to achieve deep-space ranges. The antenna was designed with Cassegrainian optics and could accommodate plug-in radio-frequency (RF) boxes at the vertex of the paraboloidal dish. These boxes supported various communications, radio astronomy, and radar functions. The interchangeable boxes are 8 Ѓ~ 8 Ѓ~ 12 ft, which is large enough for the high-power (400 kW peak and 200 kW average) new transmitter and associated microwave plumbing, feedhorns, and low-noise receivers needed for the long-range imaging radar.1 The Haystack antenna surface tolerance allows efficient operation up to 50 GHz, thus readily supporting operating at X-band (10 GHz) with a bandwidth of 1024 MHz, and a resulting range resolution of 0.25 m. A system for interchanging ground-based electronics and power sources supporting the various RF boxes was already in place. Using an established facility with existing antenna and prime power sources greatly reduced the cost of the new system, known as the Long Range Imaging Radar, or LRIR [6]. The LRIR, which was completed in 1978, is capable of detecting, tracking, and imaging satellites out to synchronous-orbit altitudes, approximately 40,000 km. The range resolution of 0.25 m is matched by a cross-range resolution of 0.25 m for targets that rotate at least 3.44Ѓ‹ during the Doppler-processing interval. The wideband waveform is 256 ѓКsec long and the bandwidth of 1024 MHz is generated by linear frequency modulation. The pulse-repetition frequency is 1200 pulses per second. The LRIR employs a time-bandwidth exchange process similar to that of ALCOR to reduce signal bandwidth from 1024 MHz to a maximum of 4 MHz, corresponding to a range window of 120 m, while preserving the range resolution of 0.25 m. To place a target in the wideband window, we first acquire the target with a continuous-wave acquisition pulse that is variable in length from 256 μsec (for short-range targets) to 50 msec (for long-range targets). An acquired target is then placed in active tracking by using 10-MHzbandwidth chirped pulses, again of variable length, from 256 μsec to 50 msec. The wideband window is then designated to the target. Antenna beamwidth is 0.05°. Figure 3(a) shows an artist’s rendition of the 120-foot Haystack antenna in its 150-foot radome; Figure 3(b) shows a photograph of the LRIR feed horn and transmitter/receiver RF box in the Haystack radome.

milstar: The transmitter and microwave subsystems also presented design challenges. To achieve maximum sensitivity the transmitter used four traveling-wave tubes (TWT) operating in parallel. Each TWT highpower amplifier developed by Varian for LRIR generates 100 kW peak and 50 kW average X-band power. Combining and balancing the TWT outputs through the myriad of required microwave components while controlling phase errors was a major challenge. The front-end receiver amplifiers developed by Airborne Instrument Laboratory are cryogenically cooled parametric amplifiers, or paramps. These efficient paramps are major contributors to Haystack’s high radar sensitivity, achieving a system noise temperature of 35 K. Although not a directly related part of the research and development of LRIR, the Haystack antenna and its protective radome are impressive engineering accomplishments. The Haystack 150-ft-diameter radome, at the time it was built in the early 1960s, was the largest rigid radome in the world. It was designed by the ESSCO Company of Concord, Massachusetts, to survive 130-mph winds.

milstar: Haystack modifizirowan w 2010 Novaja diametrom 37.5 metra titanovaja antenna ,wesom wsego 50 tonn Diapazon 92-100 ghz .s Extrapoljaziej polosi razr. sposobnost verojatno 10 mm (mozno chitat nomera awtomaschini ,esli pomestit ee na GEO orbitu -okolo 40 000 km ydalenie) http://www.haystack.mit.edu/obs/mhr/index.html

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf The Millimeter Wave Radar The Millimeter Wave Radar, or MMW, was built at Kwajalein by Lincoln Laboratory (with significant contributions by the University of Massachusetts, RCA, and Raytheon) to extend the general imaging and tracking capabilities of ALCOR and to develop millimeter-wavelength signatures of ballistic missile components. The MMW, shown in Figure 5, became operational at Ka-band (35 GHz) in 1983, and Wband (95.48 GHz) in 1985, sharing a paraboloidal antenna with a diameter of forty-five feet. Both systems initially featured wideband waveforms of 1000- MHz spread generated by linear FM, and achieved 0.28-m range resolution. The transmitted pulse width is 50 ¦Мsec at a maximum pulse-repetition rate of 2000 pulses per second. The initial peak power at Ka-band was 60 kW and at W-band was 1.6 kW. A major thrust in the evolution of the MMW radar has been to demonstrate the feasibility of candidate real-time discrimination algorithms required for fire control and guidance of hit-to-kill BMD interceptors. To this end, the radar was designed with a rigid mount and narrow beam to provide precise angle metric accuracy (ЎЬ50 ¦Мradians). Several contractors assisted the Laboratory in the development of the MMW radar, among them researchers at the University of Massachusetts, RCA (now Lockheed Martin), and Raytheon. The combination of metric accuracy, wide bandwidth, and high Doppler-resolution capabilities makes MMW an excellent sensor for a real-time discrimination test bed. It provides extremely accurate estimates of motion differences caused by mass imbalances on real and threat-like targets and other feature-identification processing. Such a real-time test bed, called the Kwajalein Discrimination System, was implemented and exercised at MMW from 1988 through 1992. This system has demonstrated the feasibility of numerous real-time wideband discrimination algorithms. Following this successful demonstration, many of these processing algorithms have been subsequently implemented permanently into the MMW real-time system. Beginning in the late 1980s, a significant effort was carried out to further enhance the capabilities of the MMW radar. Advances in computer technology reached the point where real-time pulse compression at high pulse-repetition frequencies was possible. This capability results in improved sensitivity realized from real-time coherent and noncoherent pulse integration at 35 GHz. In 1989 researchers implemented a digital pulse-compression system that compresses every pulse in real time and subsequently improves coherent processing at higher tracking rates. A state-of-theart beam-waveguide antenna feed replaced the more lossy conventional microwave-waveguide plumbing. A second 35-GHz tube was also added, which doubled the average transmitted power. These modifications increased the signal pulse detection range on a one-square-meter target to over two thousand kilometers. System bandwidth was also increased to 2 GHz, resulting in a range resolution of about 0.10 m.

milstar: Rossijskie lampi /Denisova / na 35/94 ghz -mirowogo klassa .Stoimost menee 100 000 $ za 1 stuku [BR]http://www.gycom.ru/products/pr3.html Создана серия гироклистронов – мощных усилителей диапазона миллиметровых волн для радарных систем дальнего обнаружения. Ведутся разработки широкополосных СВЧ источников для использования в системах связи и технологических установках. Частота 34 / 93 ГГц Выходная мощность 250 / 340 кВт КПД 32 / 24 % Полоса (-3 дБ) 180 / 360 МГц Усиление 34 / 23 дБ Длительность импульса 100 мкс Частота повторения 100 / 5 Гц ############# Гиро-ЛБВ 180 kwt s polosoj 1800 mgz i bolee na 35 ghz Закрытое акционерное общество Научно-производственное предприятие "ГИКОМ" (ЗАО НПП "ГИКОМ") было организована на базе Института прикладной физики Российской академии наук, находящегося в Нижнем Новгороде и ряда российских предприятий электронной промышленности. ЗАО НПП "ГИКОМ" управляется из офиса в Нижнем Новгороде, его предприятия находятся в Нижнем Новгороде и Москве. В ГИКОМ входят научные и производственные группы, занимающиеся исследованием, изготовлением и испытанием различных приборов СВЧ электроники и вспомогательного оборудования, а именно, генераторов и усилителей, включая источники рекордные по выходной мощности и КПД, сверхпроводящих соленоидов, линий передачи, аппаратуры для приема и обработки микроволновых сигналов, специализированных источников питания и пр. В ГИКОМе работают высококвалифицированные специалисты в различных областях радиофизики и электроники, в том числе более 10 докторов наук и около 40 кандидатов физико-математических и технических наук. Среди его сотрудников 8 лауреатов Государственной премии СССР, 3 человека удостоены этой премии дважды. Сотрудники ГИКОМ участвуют в подготовке специалистов, преподают в ВУЗах, руководят курсовыми и дипломными работами и готовят соискателей ученых степеней. Продукция ГИКОМа представляет собой уникальные изделия высоких технологий, основанные на собственных разработках. Как правило, эти изделия применяются в различных научных исследованиях или в разработках новых перспективных технологических процессов. http://www.gycom.ru/index.html

milstar: A major thrust in the evolution of the MMW radar has been to demonstrate the feasibility of candidate real-time discrimination algorithms required for fire control and guidance of hit-to-kill BMD interceptors. #################################### To this end, the radar was designed with a rigid mount and narrow beam to provide precise angle metric accuracy (ЎЬ50 ¦Мradians). 13.7 metra diametr cassegr antenna W sowetskom teste 1961 -15 metrow cassegr. antenni Massa D=37.5 metra iz titana =50 tonn 1.7 metra - primerno 7 tonn Wpolne mozno 100 stuk na territorii 1 mln kw.km(radius 565 km ot Moskwi) raspolozit W ljuboj moment wremeni 100 takix antenn -eto 100 sloznix ballisticheskix celej Ysilitel 200 kwt srednej w Vertex -2.4*2.24*3.6 metra Dalnost Irbis-E X band 0.9 metra 5kwt srednej/20 kwt impulsnoj dlja 0.01 kw.metra EPR 90 km(dlja 2.5 metra =350 km) (13.7/0.9)^2 * (200/5) = 231.7*40=9268^0.25 = primerno w 10 raz bolsche chem Irbis-E T.e. Dalnost podobnoj RLS pri yglax elevazii bolee 30 grad dlja EPR = 0.01 kw.metra budet primern w 10 raz dalsche ,chem y Irbis-E = 900 km (yawno wixodit za predeli graniz Rossii pri raspolozenii gde to w Kruge s radiusom 565 km ot Moskwi) 100 RLS = 100 sloznix ballisticheskix celej w odin moment wremeni ,na kazduju po 4 serii po 2 raketi tipa 53t6 s 100g K. perexwata dlja odnoj 53t6 = 0.5 ,dlja 4 serij po 2 53t6 sootw - 0.996

milstar: Decoys could be quite sophisticated and complex, but they all conformed to the basic requirement of being light in weight compared to the weight of a warhead. Thus the fundamental approach to warhead identification was to discriminate between warheads and penaids on the basis of motion, size, and shape differences caused by these weight constraints. In the early days these decoys were designed to mimic the dynamics and sensor signatures of warheads, and they would challenge a defense radar’s ability to discriminate between similar targets in reentry. A second approach to warhead discrimination involved traffic decoys, which consisted of a large number of smaller objects designed to overwhelm and confuse a BMD system. To defeat traffic decoys, the radar needed to dismiss a large number of less credible objects quickly. Wideband radar operation helped with both of these discrimination tasks [2]. http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf In particular, effective discrimination against strategic threats requires a means of dealing with potentially large numbers of small decoys and penaids at high altitudes well beyond the level where atmospheric deceleration becomes a discriminator between heavy and lightweight objects. This need was especially acute in the 1960s, when BMD emphasis was on wide-area defense of cities. It was recognized that discrimination radars with wide bandwidth and the corresponding fine range resolution would be able to measure the lengths of objects, and quickly identify and eliminate radar targets substantially smaller than warheads from consideration as threats. Furthermore, the high operating frequencies required for widebandwidth radars would be of added benefit over those available in Nike Zeus and TRADEX (both at L-band). Bandwidths that are 10% of the radar’s carrier frequency are reasonably straightforward to implement (e.g., 500 MHz at C-band or 1000 MHz at X-band). At the higher frequencies required for wide-bandwidth sensing, there is greater potential to characterize the radar target’s physical features, thus providing another level of capability for discovering attempts to disguise a target’s true nature. In addition, higher operating frequencies are less vulnerable than lower frequencies to the effects of nuclear blackout. #################################

milstar: http://vko.forum24.ru/?1-3-20-00000110-000-0-0-1302627193 Mobilnij variant toze wozmozen .Chassi schirinoj 6.8 metra wojdet antenna 5.4 metra (,na 35 ghz schirina lucha - 0.1 grad kak i y Don -2N s 18 metrow diametr w X band ) w radioprozrachnom kupole ,widerzit weter 200 km/ch ланировалось изготовить два опытных образца спецшасси, для которых в Японии закупили 24 гигантских колеса «Бриджстоун» 3180 х 1185-1295! Огромным получился и сам колесный транспортер: длина – 32 000 мм, ширина – 6800 мм, высота – 3450 мм. Дорожный просвет по кронштейнам подвески – 480 мм, колея – 5400 мм. Машина имела две двухместные кабины по правому и левому борту [BR]http://ruzhany.narod.ru/rvsn/uragan005.html Massa antenni iz titana diametrom 5.4 metra -2.0- 2.5 tonni (Haystack 37.5 metra -50 tonn) Проектные проработки полноприводного специального колесного транспортера МАЗ-7904 особо большой грузоподъемности начались в соответствии с приказом министра автомобильной промышленности СССР от 19 февраля 1980 года № 15. В январе 1984 года легендарное детище Шапошника - МАЗ-7904 (12 х 12) был на Байконуре собран, а в феврале начались его испытания, которыми руководил заместитель главного конструктора Владимир Захаров. Водители-испытатели Н. Аксиневич, А. Савин, Л. Гляцевич, М. Шалкевич, Н. Петрович успешно одолели на супергиганте 4101 километр казахстанской степи, развивая при этом скорость до 27 км/час.

milstar: poprawka BILO Massa D=37.5 metra iz titana =50 tonn 1.7 metra - primerno 7 tonn --------------------------------- 3 wipalo prawilno 13.7 metra - primerno 7 tonn ##########################

milstar: http://www.missilethreat.com/repository/doclib/19840400-OTA-directedenergy.pdf From apogee, the slowest point in their freefall trajectory, the RVs and empty bus gain speed as they fall back to earth. RVs are more resistant to damage from directed-energy weapons than boosters, and they might be accompanied by many decoys. When these objects enter the upper atmosphere at about 100 km altitude ################################ Prjamaja widimost' s yrownja zemli 100 km wisoti -1100 km . Figure 2.1 .–The Flight of a Hypothetical Future Soviet ICBM With the Booster Characteristics of the U.S. MX Peacekeeper, Drawn to Scale

milstar: Комплекс средств прорыва перспективной противоракетной обороны: для преодоления перспективной ПРО вероятного противника ракета РТ-2ПМ2 снабжается комплексом средств прорыва ПРО новой разработки, созданным с использованием элементов комплекса средств прорыва ПРО "Сура" (который, в свою очередь, был создан во время работ по теме "Универсал"), и состоящем из пассивных и активных ложных целей и средств искажения характеристик головной части. ЛЦ неотличимы от боевых блоков во всех диапазонах электромагнитного излучения (оптическом, лазерном, инфракрасном, радиолокационном), позволяют имитировать характеристики боевых блоков практически по всем селектирующим признакам на внеатмосферном, переходном и значительной части атмосферного участка нисходящей ветви траектории полета боевых блоков ракеты, являются стойкими к поражающим факторам ядерного взрыва и излучению сверхмощного лазера с ядерной накачкой и пр. Впервые спроектированы ЛЦ, способные противостоять РЛС со сверхразрешением. Средства искажения характеристик головной части состоят из радиопоглощающего (совмещенного с теплозащитным) покрытия ГЧ, генераторов активных радиопомех, аэрозолей-источников инфракрасного излучения и т.д. КСП ПРО призван значительно увеличить время, необходимое перспективной ПРО вероятного противника для детектирования ГЧ среди множества ложных целей и помех, таким образом, значительно уменьшая вероятность перехвата ГЧ. Massa i gabariti loznoj celi otlichni ot BB .Plotnost atmosferi ochen mala ,no skorost ochen wisoka i letet oni budut po raznomu Konechno mozno sdelat loznuju cel s toj ze massoj i gabaritami chto i BB ############################################### Oni budut letel odinakowo - no togda wigodnee wmesto loznoj celi postawit esche odin BB ############ [BR]http://rbase.new-factoria.ru/pub/topol_tomorrow/topol_tomorrow.shtml По ряду данных, масса КСП ПРО МБР "Тополь-М" превышает массу КСП ПРО американской МБР Peacekeeper. В перспективе, при оснащении ракеты маневрирующей головной частью (или разделяющейся головной частью с боевыми блоками индивидуального наведения), возможности ПРО вероятного противника по перехвату ГЧ будут, по утверждению российских специалистов, сведены практически к нулю. podobnogo sorta ytwerzdenija wiziwajut podozreniaj k wsemu wischeskazannomu ##################################################### w stat'e ######## Bila realizowana MARV Trident Mark 500 s yskorenijami do 200 g Sozdat Protivoraketu s takimi yskorenijami toze wozmozno . ######################################## Esli k perexwata odnoj protivoraketi budet realizowan 0.5 ,to dlja 8 (4 serii po 2) on stanowitsja 0.996 ################# Sozdat dlja 1000 yabch 8000 raket PRO dlja USA ne predstawljaet problemi Несмотря на это, новая БЧ и ББ значительно более устойчивы к ПФЯВ и действию оружия, основанного на новых физических принципах, ################################# podobnogo sorta ytwerzdenija wiziwajut podozrenija k wsemu wischeskazannomu ##################################################### w stat'e #######

milstar: Skoree kombinacija sledujuschix reschenij 1. KSP -loznie celi ,aerozoli 2. Minimizacija EPR ,IR 3. MARV ,viskoie yskorenija do 200 g 4 .Attaka w gruppe ,samopodriv odnogo BB pri attake protivoraketoj Schumowaja temperatura rezko wozrastaet Tak w tablizehttp://www.gdsatcom.com/Antennas/Data_Sheets/655-0008B_13.1m.pdf raznie znachenija schumowoj temperaturi ot 30 K do 90 K Esli prosto nawesti antennu na solnze -to schumowaja temperatura srazu stanet 6000 ° K ------------------------------------------------------------------------------------------------------ + wisokaja ionizacija atmosferi 5. Manewrirowanie na linii Kaymana -118 km Ygol mesta RLS na distanzii 1000 km i wisote celi 118 km budet blizok k 0 po srawneniju s yglom 30° dalnost RLS pri prochix rawnix padaet w neskolko raz ( 94 ghz w 11-12 raz) Pochti wse ykazanie wozmoznosti powischenija chansow preodolenija PRO swjazanni ####################################################### s reservom zabrasiwaemoj massi ####################### Orientirovochno Massa BB 17-18 kg ,Moschnsot 1-1.5 kt ( Bch art snarjada vniitf) 147 kg -200 kt - SRAM-2 130 kg -170 kt ALCM pri moschnostjax 100-200 kt ,padenei moschnsot w 10 raz sootw . sniteniju radiusa porazeniaj w 2 raza w 2 raza ,radius w 1.226 raza

milstar: Thertez chassi Topolja/Yars . Wes 44 tonn .Max .nagruzka -80 tonn [BR]http://www.avtomash.ru/pred/mzkt/mzkt79221_100.htm Pri schirine protivoraket 53T6,GBI porjadka 1 metra ,raketi Midgetman -1.02 metra dline 53t6 -10 metrow ,GBI -12 metrow ? ,Midgetman -14 metrow masse 53t6 -10 tonn,GBI -12 tonn ,Midgetman 16.78 tonni celesoobrazno razrabotat varianti -2 kontjnera s 2 raketami i 3 kontejnera s 3 raketami ################################################### Variant s 3 raketami ( sootw. raschirenie schassi s 3.4 metra do 4.5 ) budet bolee ystojschiw k wozdejstwiju jadernogo wzriva (perevorachiwaniju) ################################################# Pri nalichii smeschannogo boekomplekta battarei ################################# 2 RLS ( 8 ghz i 35 ghz) 12 tjagachej s 24 -36 kontejnerami ,i z kotorix 6-9 ICBM , Auftragtactic protivnik budet winuzden ynictozit ne tolko RLS no i wse PU (w tom chisle pustie) - 14 tjagchej pri nalichii boekomplekta tolko s protivoraketami ynichtozenie tolko RLS( 2 tjagacha) wedet k polnoj poteri boesposobnosti battarei

milstar: Так выглядит прибалхашская полупустыня в районе площадки № 35 10-го испытательного полигона ПРО (Сары-Шаган) Фото: Михаил ХОДАРЕНОКПОЛИГОНЫ Многоканальный стрельбовый комплекс «Амур-П» МКСК в настоящее время является базовым средством 10-го испытательного полигона ПРО для отработки текущих и перспективных задач противоракетной обороны Учитывая важность и первоочередную значимость работ по совершенствованию противоракетной обороны, в 1974 г. было принято решение о развертывании и испытаниях на полигоне Сары-Шаган многоканального стрельбового комплекса (МКСК) «Амур-П» в интересах создания системы ПРО г. Москвы 2-го поколения – системы А-135, способной решать задачу противоракетной обороны от сложных баллистических целей. 15 января 1970 г. создано ЦНПО «Вымпел», одной из основных задач которого стала разработка проекта новой системы ПРО А-135. В 1971 г. под руководством главного конструктора А. Г. Басистова институтами ЦНПО «Вымпел» с участием МКБ «Факел» и ОКБ «Новатор» был разработан проект на систему А-135 и МКСК «Амур». В нем предусматривалось создание трех МКСК «Амур», расположенных на расстоянии 600–800 км от Москвы, и трех комплексов ближнего перехвата в непосредственной близости от Москвы. ############################################################## NIOKR ochen bolschie ,sootwetstwenno ix nado razdelit na seriju 16 kompleksom minimum na territorii Rossii ############################# При такой структуре системы А-135 зоны поражения противоракетами дальнего перехвата отодвигались на 800–1200 км от Москвы. При этом резко сокращался наряд противоракет для поражения МБР ############################################### Eto wrjad li Preimuschestwo -mozno ispolzowat neskolko serij Esli werojatnost perexwata odnoj raketoj -0.5 to 4 serij po 2 - 0.996 ################## Stoimost 8 protivoraket 8*20 mln $ = 160 mln $ nesoizmerimo mensche chem wozmoznij yscherb ot podriwa 10 kt w plotnozaselennom kwartale Moskwi w lutschee wremja Gibel 50 000 chel srazu i ekonomicheskij yscherb bolee 100 mlrd $ Esli 8000 Protivoraket sposbni perexwatit 1000 yabch s koef 0.996 ( iz 1000 proidut PRO tolko 4) to eto ochen xoroscho ################# Na tekuschij den Tolko attaka USA ili kombinirowannaja USA/NATO smozet preodalet podobnoe PRO и повышалась радиационная безопасность столицы от ядерного взрыва своих противоракет. http://vko.ru/DesktopModules/Articles/ArticlesView.aspx?tabID=320&ItemID=439&mid=2891&wversion=Staging

milstar: частности, В. И. Марков демонстративно приютил в своем НИИ группу разработчиков РЛС «Программа-2», прожект которой был мною забракован при попытке его авторов пристроиться в околопроблемной кормушке под вывеской ПРО, спекулируя на действительно важной проблеме селекции баллистических целей по способу Ходжи Насреддина, касающемуся шаха и его ишака. http://militera.lib.ru/memo/russian/kisunko_gv/20.html

milstar: Но никто не мог ответить на вопрос – какие именно признаки широкополосного сигнала отличают боеголовки от ложных целей и как эти признаки могут быть из него извлечены. http://militera.lib.ru/memo/russian/kisunko_gv/20.html Po kinematike dwizenija -- ves ,centr tjazesti istinnoj celi i loznoj otlichaetsja ################################################## Plotnaost Atmosferi na wisotax 200 km krajne nizkaya ,no ne 0 a skorosti wisokie 7 km/sek polosa signala 2000 mgz -razreschajuschaja sposobnost 0.10 metra mozet bit realizowanna na 35 ghz Krome togo powischenie diapazona (pri rawnoj polose signala) w 10 raz s 9 ghz ( X band) do 94 ghz ywelichiwaet skorost raspoznowanija celi po wrascheniju w 10 raz Nedostatki - raspr. 35 ghz ,94 ghz pri yglax elevazii blizkix k 0 Experiment RLS Warloc NRL -padenie w 11-12 raz na yglax elevazii 0.4 grad po srawneniju s 30 grad http://www.ll.mit.edu/publications/journal/pdf/vol13_no1/13_1overview.pdf http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2ballisticmissiledefense.pdf http://web.mit.edu/annualreports/pres08/2008.14.00.pdf Continuing development of coupled-cavity TWTs allowed Varian to produce 35-GHz transmitter tubes with 50-kW peak power and 2-GHz bandwidth. Figure 18 illustrates the configuration of the 35- GHz beam-waveguide system. Figure 19 is a photograph of the 95-GHz scalar or ridged horn feeds. These very small horns launch an almost perfect Gaussian beam. After refocusing with the mirrors of the beam-waveguide system, excellent illumination of the 13.7-m MMW radar antenna is achieved. The contrast in the size of these feeds and those of ALTAIR is a reminder of the very broad spectral band that is covered by the KREMS radars. ... The superwideband compressive receiver program completed a second measurement campaign aboard an Air Force aircraft. The highlight of this test was the demonstration of full real-time processing of threat signals across a 4.0-GHz instantaneous bandwidth. The compressive receiver met or exceeded aggressive performance targets for sensitivity, dynamic range, and frequency accuracy.

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Wideband Radar for Ballistic Missile Defense and Range- Doppler Imaging of Satellites Bandwidths that are 10% of the radar’s carrier frequency are reasonably straightforward to implement (e.g., 500 MHz at C-band or 1000 MHz at X-band). In particular, effective discrimination against strategic threats requires a means of dealing with potentially large numbers of small decoys and penaids at high altitudes well beyond the level where atmospheric deceleration becomes a discriminator between heavy and lightweight objects. It was recognized that discrimination radars with wide bandwidth and the corresponding fine range resolution would be able to measure the lengths of objects, and quickly identify and eliminate radar targets substantially smaller than warheads from consideration as threats. Furthermore, the high operating frequencies required for widebandwidth radars would be of added benefit over Wideband Observables ################# The distinguishing characteristic of a wideband radar is its fine range resolution, which is inversely proportional to the operating bandwidth. ###################### Such a radar system has a range resolution that is a fraction of the linear dimensions of its intended targets. These radars generally operate at high frequencies, where widebandwidth waveforms are easier to implement. With range resolution fine enough to encompass a target in a significant number of resolution cells, ########################### it becomes possible to distinguish individual scattering centers, which occur at regions of physical discontinuity. A ballistic missile warhead, for example, exhibits radar reflections from the nose, body joints, and base, as well as other points of discontinuity such as antenna ports. #################################### To observe radar reflections from smaller discontinuities, the radar must be able to operate at short wavelengths, since discontinuities much smaller than a wavelength will in general produce low-intensity reflected signals from the target. In addition, a short wavelength is desirable for observing curved surfaces, because when the wavelength is short compared to the radius of curvature, the radar reflection is dominated by specular reflection, thus allowing a finer determination of the size and shape of corresponding surfaces. For an object that reenters the atmosphere and generates an ionized wake, fine range resolution allows examination of the wake in thin slices, which results in the separation of reflections from different atmospheric phenomena around the hard body, such as the plasma layer at the nose or leading surface, the plasma sheath around the body, the boundary layers, the shock fronts, and the development of turbulent regions at the rear of the body. Such observations are of great value in deriving information about a target’s physical parameters, structural and heat-shield materials, and the function of reentering objects, all of which aid the discrimination process of distinguishing warheads from decoys. In the above scenario, the radar produces a one-dimensional range profile of the target. However, if the target is rotating about an axis that has a component perpendicular to the radar line of sight, such that some scattering centers are moving toward the radar with respect to others that are moving away from it, we can construct a one-dimensional cross-range profile for each range cell through Doppler processing of the radar returns. The range and cross-range profiles can then be combined to produce a two-dimensional range-Doppler image of the complete body. We can analyze this image to yield body size, body shape, the position and nature of scattering centers, the presence of internal reflections, the rotation rates, and the rotation axes for the object. In addition, these images can provide valuable information on the nature of the materials used in constructing the body, and information about antennas, apertures, and interior structures of such an object. Three-dimensional images can be generated from the two-dimensional images by using a technique called extended coherent processing. With this technique a series of range-Doppler images are collected over a time period when the target presents different look angles to the radar. The series of range-Doppler images is then coherently processed and referenced to a particular look angle. The resulting three-dimensional images produce even greater detail of target features than the two-dimensional range-Doppler images. The image of the damaged Skylab orbiting laboratory shown in Figure 1 is an example of this kind of processing. More recent advances in signal processing hardware and computational speed have led to the generation and measurement of wideband observables in real time. These observables, which can be used for real-time BMD discrimination, include determination of body length, feature identification, and radar images. Doppler processing and coherent phase-derived range techniques permit real-time indications of macro- and micro-dynamic body motion, which may offer clues to mass and mass distribution. Advances in wideband phased-array radar design now make it possible to exploit wideband observables on multiple objects in a missile complex.

milstar: канун Нового, 1970 года замминистра В. И. Марков созвал руководящий состав подведомственных ему организаций Минрадиопрома и обратился к присутствующим со следующей речью: – Я собрал вас, чтобы объявить приказ министра Валерия Дмитриевича Калмыкова о создании Центрального научно-производственного Объединения (ЦНПО) «Вымпел» по тематике ПРО, СПРН и контроля космического пространства. В него войдут следующие организации: ОКБ «Вымпел» с его филиалами, Радиотехнический институт (директор Александр Львович Минц), НИИ ДАР (и. о. директора Франц Александрович Кузьминский), КБ радиоприборов (директор Георгий Георгиевич Бубнов), Днепропетровский радиозавод (директор Леонид Никифорович Стромцов), головная организация ЦНПО – научно-тематический центр (НТЦ) выделяется из ОКБ «Вымпел»; Тринадцатое Главное управление Минрадиопрома реоганизуется в Спецуправление в составе НТЦ. Генеральным директором ЦНПО «Вымпел» и начальником НТЦ министр назначил меня, заместителем генерального директора по научной работе – Григория Васильевича Кисунько. Первым взял слово академик Александр Львович Минц. – Категорически возражаю, – сказал он. – Этот приказ ставит меня в положение административного диктата со стороны Григория Васильевича Кисунько по научным вопросам, в которых наши взгляды принципиально противоположны. На это Марков ответил репликой: «Значит, нам придется подобрать другого директора РТИ». http://militera.lib.ru/memo/russian/kisunko_gv/20.html

milstar: Резким контрастом нашей дырявой изнутри и снаружи сети надгоризонтных РЛС ПРО – СПРН является созданное в США сплошное круговое радиолокационное поле дециметрового радиодиапазона, четырежды эшелонированное в направлении на СССР: Бимьюс, Кобра Дейн, ПАР, Пэйв Пос. Это поле является устойчиво живучим и гарантирует получение и выдачу высокоточной достоверной информации о характере и структуре налета МБР на территорию США с любого направления. http://militera.lib.ru/memo/russian/kisunko_gv/20.html И все же после моего письма на имя Л. Н. Зайкова от 24 февраля 1986 года эту тему бесшумно спустили на тормозах, и было упразднено ее головное подразделение. Но 2 апреля 1993 года подспудно, в каких-то секретных дебрях НИИ, возглавляемого Р. Авраменко, И. Омельченко и А. Басистовым, вылупилась новая СВЧ-утка: в России изобретено «плазменное» оружие ПРО и президент России в Ванкувере предложит США принять участие в совместном с Россией эксперименте «Доверие» на противоракетном полигоне США.

milstar: Глава двадцать первая Нет повести печальнее на свете, чем о советской противоракете. Система А-35 успешно прошла госиспытания и была принята в эксплуатацию двумя очередями: первая очередь – в июне 1972 года, вторая – в 1974 году (подключение к объектам первой очереди и сдача в эксплуатацию системы в целом). Окончание госиспытаний первой очереди было отмечено рапортом XXIV съезду КПСС за подписями министров Гречко, Калмыкова и Дементьева с указанием фамилий генеральных конструкторов Кисунько и Грушина. При этом в акте госкомиссии по результатам испытаний системы «Алдан» была зафиксирована вероятность поражения системой назначенной ей баллистической цели – 0,93. Столь высокая эффективность стрельбы не была достигнута ни в одной из ранее испытывавшихся систем ПВО. http://militera.lib.ru/memo/russian/kisunko_gv/21.html

milstar: При этом в акте госкомиссии по результатам испытаний системы «Алдан» была зафиксирована вероятность поражения системой назначенной ей баллистической цели – 0,93. Столь высокая эффективность стрельбы не была достигнута ни в одной из ранее испытывавшихся систем ПВО. Awtor storonnik dostizenija bolee realnoj verojatnosti 0.5 ####################################### Dlja odnoj boegolowki TRdient D-5 i odnoj protivoraketi tipa 53t6 ############################################## bez "podswetki " atmosferi yadernim wzriwom Esli budet dostignut 0.5 dlja odnoj raketi to dlja 4 serij po 2 (wsego 8) budet 0.996 dlja 1000 yabch budet neobxodimo 8000 protivoraket tipa 53t6 i dalnego perexwata tipa GBI (no s yabch) t.e. massoj po 10-14 tonn (po 4 stuku na schassi Topol-M ,gruzopodemnost 80 tonn) Wopros perexwata w slushae podriwa serii yabch w kosmose i atmosfere -otwet neyasen ######################################################### kak i perexwat KR S-400 ,S-300V w sluschae podriwa serii yabch ##############################################

milstar: Пройдет три года, и в Кремле В. В. Кузнецов будет вручать государственные награды участникам модернизации системы А-35. И один из награжденных – Николай Николаевич Родионов – заявит при получении награды: «Очень жаль, что среди нас нет Григория Васильевича Кисунько – изобретателя и генерального конструктора системы А-35М». Да, обошли меня наградой; но самой ценной, самой высокой наградой для меня всегда будут слова генерал-полковника Юрия Всеволодовича Вотинцева – бывшего командующего войсками противоракетной и противокосмической обороны, сказанные им в интервью газете «Правда» 10 декабря 1992 года: «Наибольший вклад в создание ПРО внесли Кисунько и Мусатов. Но в самый напряженный период работы над системой, из-за интриг в Минрадиопроме, они были от дела отстранены». http://militera.lib.ru/memo/russian/kisunko_gv/21.html

milstar: http://www.arrl.org/files/file/Technology/tis/info/pdf/0210028.pdf 1. Schumowaja temperatura Luni wische chem neba Since the beamwidth of the 3 meter dish at 10 GHz (0.7 degree) is nearly as small as the subtended angle of the Moon (about 0.5 degree), most of the noise that the antenna sees is generated by the Moon, which is significantly hotter than the background cold sky. ########################## 2. Schumowaja temperatura 11.1 metra antenni w diapazone X -55-74 grad K ot ygla elevazii 21 metra w X-band 62 °K -80° K http://www.gdsatcom.com/Antennas/Data_Sheets/655-0026B_11m.pdf http://www.gdsatcom.com/Antennas/Data_Sheets/655-0069B_21m.pdf Pri nawedenii na Solnze 6000 K ###################### Yrowen Minimalno prinimaemaego signala po moschnosti ywelichiwaetsja primerno na 20 db ili w 100 raz ############################################################### esli cel naxoditsja w predelax diametra Solnza ################################# 3. Pri jadernom wzriwe rjadom s celju ,ochewidno chto dalnost RLS ponizitsja po rjadu prichin ########################## schumovaja temperatura ,ionizacija ,EMI &

milstar: Reception Reports Since our initial QSO we have been heard by G3WDG, RW3BP, VE7CLD and AA6IW. RW3BP has been hearing both Barry and I almost every time we have been on. All stations have been using dishes that range from a 2.4 m off set fed to a 4.5m prime focus unit, and are using preamplifi ers of approximately 2 dB noise fi gure. Just as the EME experience at 10 GHz has shown, moon noise at 24 GHz limits the ultimate receiver sensitivity, #################################################################### so that a large dish and a “really good” preamplifi er do not produce significantly better received signals. ################################################################### http://home.planet.nl/~alphe078/extra/eme_l07.pdf “Small” receive stations should be able to hear signals, however in order to be heard above the moon noise, the transmit ERP cannot be reduced. W otlichii ot Luni schumovaja temperatura Solnza -6000 ° K ------------------------------------------------------------------------- Yadernogo wzriwa sootwetstwenno --------------------------------------------- attaka w gruppe i podriw seriii yabch dlja glsuchenija RLS ... Th e local elevation angle of the moon was found to be very important. ############################################## padenie dalnosti RLS Warloc 94 ghz pri yglax elevazii 0.4° w 11-12 raz po srawneniju s yglom elevazii 30°

milstar: AN/SPG-62 Fire Control Radar The Raytheon/RCA AN/SPG-62 is an I/J-Band fire control radar on Aeigis-class ships operates as a component of the MK-99 Fire Control System (FCS). FCS controls the continuous wave illuminating radar, providing a very high probability of kill. The Mk-99 Fire Control System also controls the target illumination for the terminal guidance of Ship Launched SM-2 Anti-Air Missiles. The AN/SPG-62 is a continuous wave, illumination radar for the Standard SM-2 missile as part of the Mark 99 fire-control system in the Aegis air defense missile system. The Aegis ships have three (DDG-51) or four (CG47) Mk 99 missile control directors that use the SPG-62 illumination channel to provide radar reflections for Standard missiles. Physical resemblance to the AN/SPG-52. The SPY-1 radar system detects and tracks targets and then points the SPG-62 toward the target, which in turn provides illumination for the terminal guidance of SM-2 missiles. In order to track a target a very narrow beam of RF energy is needed. The narrower the beam, the more accurately it is possible to tell whether there is one target or multiple targets (this is called radar resolution). This narrow beam radar is normally a second radar that works with a primary search or track radar. The AN/SPG-62 illuminating radar works as a second radar with the AN/SPY-1 series radar. Antenna Dimensions: 7 ft 5 in (2,286 mm) diameter Band: I-J (8-20 GHz) Peak Power: 10 kW (average) http://www.globalsecurity.org/military/systems/ship/systems/an-spg-62.htm http://en.citizendium.org/wiki/File:Antenna_suite_on_CG-60_Normandy_AEGIS_cruiser.jpg The AN/SPG-62 is a continuous wave, mechanically steered, terminal guidance illumination radar for the RIM-156 Standard SM-2 missile. These missiles use semi-active radar homing for their final guidance, so the Mark 99 fire control subsystem of AEGIS time-shares the illumination radars. Other functions of the Mark 99 system include loading, arming and launching the Standard missiles using the vertical launch system. Three AN/SPG-62 antennas are visible, at far left and second from rightPrimary search and midcourse guidance comes from the AN/SPY-1 phased-array radar, Only as the missile is making final approach to its target does there need to be AN/SPG-62 energy on the target, so the AEGIS battle management system can have more missiles flying against more targets than it has illuminators. Burke-class and Kongo-class destroyers have three and Ticonderoga-class cruisers have four AN/SPG-62's. Spanish F-100 frigates, versions of which are used by Australia, Norway and South Korea, have two. These radars, made by Raytheon, operate in the I/J bands with a peak power of approximately 10 kilowatts. Obviously, the specific operating frequencies change frequently and are classified, for reasons of protecting the missile guidance system from the target's electronic countermeasures (i.e., its self-protection electronic attack capabilty http://en.citizendium.org/wiki/SPG-62

milstar: -------------------------------------------------------------------------------- Rather than using the existing Dual-Band Radar design in new ships, however, the “Air and Missile Defense Radar” (AMDR) aims to fulfill future CG (X)/ DG-51 Flight III cruiser needs through a new competition. It could end up being a big deal for the winning radar manufacturer, and for the fleet… Rather than extending or modifying the existing Dual Band Radar combination used on its DDG-1000 Zumwalt Class, the “Air and Missile Defense Radar” (AMDR) aimed to fulfill these need through a re-opened competition. The resulting radar will have 3 components: •The AMDR-X radar will provide horizon search, precision tracing, missile communications, and final illumination guidance to targets. •The AMDR-S radar will provide wide-area volume search, tracking, Ballistic Missile Defense (BMD) discrimination, and missile communications. While CG (X) and its DDG-51 Flight III replacement are both “blue water” ships, requirements do call for defense against very low observable/very low flyer (VLO/VLF) threats in heavy land, sea, and rain clutter, where S-band has some advantages. •The back-end Radar Suite Controller (RSC) will perform all coordination, ensuring that the radars work well together. The US Congressional GAO estimates the cost of the AMDR program at $2.3 billion for R&D and $13.4 billion for procurement, a total of $15.7 billion. ############################################################################################## In order to reach those figures, however, AMDR will need to seize a larger opportunity. DDG-77 USS O’Kane (click to view full)That requirement for adjustable size is the key to AMDR’s larger opportunity. If the adjustments can be taken far enough, it could give the Navy an opportunity to add or retrofit AMDR to some of its 60+ serving Arleigh Burke Class ships, ############################################################ DDG-1000 Zumwalt Class destroyers, or later carriers of the CVN-78 Gerald R. Ford Class. ############################################################# An October 2008 report from the right-wing Heritage Foundation draws on other sources to note that weight shifts can also create issues: ”...SPY-1E [active array] radar could affect the stability of the upgraded Arleigh Burkes because the radar’s phased-array pan-els weigh more than the panels of the earlier SPY-1 radar, which it will replace. While the SPY-1E’s weight is concentrated more in the panels, freeing more space below deck,[78] this greater weight would be added to the ship’s superstructure. Combined with the DDG-51’s relatively narrow hull width and short length, this could cause stability problems, particularly when sailing in rough weather.” http://www.defenseindustrydaily.com/AMDR-Competition-The-USAs-Next-Dual-Band-Radar-05682/ Nor are they devoid of X-band or ballistic missile defense experience. Their L-Band AN/TPS-59 long range radar has been used in missile intercept tests, and is the only long range 3D Radar in the Marine Air-Ground Task Force. It’s related to the AN/TPS-117, which is in widespread service with over 16 countries. Then, too, the Patriot missile’s MEADS successor system’s MFCR radar will integrate an active array dual-band set of X-band and UHF modules, via a common processor for data and signal processing. SBX-1, Pearl Harbor (click to view full)Raytheon goes into AMDR with experience developing the existing Dual-Band Radar’s Radar Suite Controller and SPY-3 X-band radar, along with the dual X/S band system that will equip the Cobra Judy (USNS Observation Island) Replacement vessel used to track missile launches and tests around the world. Phased array radars for wide-area air and ballistic missile defense are another strong point. Raytheon builds the AN/TPY-2 X-band radar used by the land-based THAAD missile system, the 280 foot high X-band array on the floating SBX missile defense radar, and the large land-based ballistic missile Upgraded Early Warning Systems like the AN/FPS-108 Cobra Dane and AN/FPS-115 PAVE PAWS. On the S-band side, the firm builds the S-band transmitters for Lockheed’s SPY-1 radar. Unsurprisingly, Raytheon personnel who talked to us said that: ”... leveraging concepts, hardware, algorithms and software from our family of radars provides a level of effectiveness, reliability and affordability to our proposed AMDR solution…. The challenge for all the competitors will be to deliver a modular design. The requirements demand that the design be scalable without significant redesign…. A high power active radar system requires significant space not only for the arrays themselves but also for the power and cooling equipment needed to support its operation. Finding space for additional generators and HVAC plants can be quite challenging for a backfit application. That is why power efficiency is a premium for these systems.” Northrop Grumman was a less obvious contender, despite its enviable record making advanced AESA and phased array radars for use on aircraft of all types and sizes, and land-based systems like the US Marines’ Ground/Air Task Oriented Radar (G/ATOR). In subsequent discussions, he stressed that Northrop Grumman has shipboard radar experience, too. They’re the prime contractor for the AN/SPQ-9B track-while-scan X-band radar, the SPS-74 used to detect submarine periscopes, and navigation radars. On a less visible note, the firm has been working under several CRAD programs from 2005 to the present, targeted at technology demonstrations, system risk reduction, and new integration techniques for advanced S-band shipboard radars. Finally, the firm has a partnership with Australia’s CEA Technologies, which is developing an advanced AESA X-band (CEAMOUNT) and S-band (CEAFAR) radar set for Australia’s ANZAC class frigate upgrade. What does this team see as important? “The ability to scale up to a potential future cruiser or down to a DDG-51 variant is fundamental to the Northrop Grumman radar architecture. Size, weight and power (SWaP) of the radar system are the key drivers…. Minimizing the radar impact is key to an affordable surface combatant solution. We are focused on not just the radar technology, but to minimize the ship impact while allowing for scalable growth in the future. We are working closely with various elements in the Navy to address the ship impact of large AESA radars on the entire ship.”

milstar: Aegis Radar http://www.defenseindustrydaily.com/The-US-Navys-Dual-Band-Radars-05393/ http://media.defenseindustrydaily.com/images/ELEC_CG-60_AEGIS_Antenna_Suite_lg.jpg 1.AN/SPS-49 Very Long-Range Air Surveillance Radar Antenna Parameters: Parabolic Reflector stabilized for roll and pitch 7.3m/24 ft wide, 4.3m/14.2 ft high Gain 28.5 dB Scan rate 6 or 12 rpm The AN/SPS-49(V) radar operates in the frequency range of 850 - 942 MHZ. In the long range mode, the AN/SPS-49 can detect small fighter aircraft at ranges in excess of 225 nautical miles Transmitting Power: 360 kW peak 280 kW specified peak power 12-13 kW average power http://www.globalsecurity.org/military/systems/ship/systems/an-sps-49.htm 2. Passive phase array with diametr 3.7 metr 3.1 -3.45 ghz AEGIS ships have a more effective radar at their disposal, however: the AN/SPY-1B/D/E passive phased array S-band radar can be seen as the hexagonal plates mounted on the ship’s superstructure. SPY-1 has a slightly shorter horizon than the SPS-49, and can be susceptible to land and wave clutter, but is used to search and track over large areas. It can search for and track over 200 targets, providing mid-course guidance that can bring air defense missiles closer to their targets. Some versions can even provide ballistic missile defense tracking, after appropriate modifications to their back-end electronics and radar software. Lockheed Martin’s SPY-4 Volume Search Radar (VSR) is an S-band active array antenna, rather than the SPY-1’s S-band passive phased array. The Navy was originally going to use the L-band/D-band for the DBR’s second radar, but Lockheed Martin had been doing research on an active array S-band Advanced Radar (SBAR) that could potentially replace SPY-1 radars on existing AEGIS ships. A demonstrator began operating in Moorestown, NJ in 2003. That same year, its performance convinced the Navy to switch to S-band, and to make Lockheed Martin the DBR subcontractor for the volume search radar (VSR) antenna. It also convinced Lockheed Martin to continue work on the project as a complete, integrated radar, now known as “S4R”. S-band offers superior performance in high-moisture clutter conditions like rain or fog, and is excellent for scanning and tracking within a very large ############################################################################################### volume. ###### While Lockheed Martin makes the VSR antenna, the dual-band approach means that Raytheon is responsible for the radars’ common back-end electronics and software. 3 ... The 3rd component is the AN/SPG-62 X-band radar “illuminators,” which designate targets for final intercept by air defense missiles; DDG-51 destroyers have 3, and CG-47 cruisers have 4. During saturation attacks, the AEGIS combat system must time-share the illuminators, engaging them only for final intercept and then switching to another target.

milstar: Launches of SLBMs from some areas of the North Atlantic could still be detected only by the Don-2N radar in Moscow. http://iis-db.stanford.edu/pubs/20734/Podvig-S&GS.pdf

milstar: Intercepting an incoming warhead in a test is not an unusually difficult achievement if you have missiles capable of entering the upper atmosphere and good tracking radars. The Nike-Zeus system intercepted 10 out of 14 warheads in 1962, although this was with nuclear warheads. ################################################################################ 5 The first successful non-nuclear intercept of a dummy Minuteman ICBM warhead in flight was on 10 June 1984 by an infra-red guided Kinetic Kill Vehicle (KKV), which unfurled a 4.2 metre metal net containing 36 spines.6 http://www.ausairpower.net/APA-NOTAM-140110-1.html

milstar: COBRA DANE is a national technical intelligence sensor, located on the island of Shemya, Alaska, at Eareckson AF Station. In First deployed in 1977, the AN/FPS-108 radar operates in the 1215-1400 MHz band using a 29m phased array antenna. -------------------------------------------------------------------------------------------------------------------------------------------- The primary mission is to track and collect data on foreign intercontinental ballistic missile (ICBM) and submarine launched ballistic missile (SLBM) test launches to the Kamchatka impact area and the broad ocean impact areas in the Pacific Ocean. The metric and signature data collected support START 2 and INF treaty monitoring, and scientific and technical intelligence efforts. http://www.fas.org/spp/military/program/track/cobra_dane.htm First deployed in 1977, the Cobra Dane is an AN/FPS-108 radar that operates in the 1215-1400 MHz band using a 29m phased array antenna. During the Cold War, its primary mission was to track Soviet ballistic missile warheads aimed at the North Pacific. At present, it is used to track and collect data on Russian ICBMs and SLBMs test launches directed toward the Kamchatka impact area and the North Pacific, although it is also capable of tracking targets in space at 40,000 km. ############ In addition, the Cobra Dane radar is used to verify, safeguard, and monitor the reductions of nuclear arms under the Strategic Arms Reduction Treaty (START).(2) In 2004, hardware installation and software upgrades to the Cobra Dane radar were completed. To test these upgrades, the AN/FPS-108 radar tracked a foreign missile launch and participated in an integrated ground test. Until September 2005, however, the upgraded Cobra Dane radar had not participated in a flight test event as the primary fire control radar. http://missilethreat.com/missiledefensesystems/id.15/system_detail.asp

milstar: AN/SPQ-11 COBRA JUDY The Cobra Judy radar is a ship-based radar program based on the US Naval Ship Observation Island [T-AGM-23]. COBRA JUDY operates from Pearl Harbor and is designed to detect, track and collect intelligence data on US. Russian, and other strategic ballistic missile tests over the Pacific Ocean The AN/SPQ-11 shipborne phased array radar is designed to detect and track ICBM's launched by Russia in their west-to-east missile range. The Cobra Judy operates in the the 2900-3100 MHz band. The octagonal S-band array, composed of 12 288 antenna elements, forms a large octagonal structure approximately 7 m in diameter. and is integrated into a mechanically rotated steel turret. The entire system weighs about 250 tonnes, stands over forty feet high. In 1985 Raytheon installed an 9-GHz X-band radar, using a parabolic dish antenna to complement the S-band phased array system. The five story X-band dish antenna is installed aft of the ship's funnel and forward of the phased array. The X-band upgrade was intended to improve the system's ability to collect intelligence data on the terminal phase of ballistic missile tests, since operation in X-band offers a better degree of resolution and target separation. The S-Band and X-Band radars are used to verify treaty compliance and provide support to missile development tests by the Ballistic Missile Defense Organization. The radars are also being used for research and development work in areas not accessible to ground-based sensors. http://www.fas.org/irp/program/collect/cobra_judy.htm

milstar: COBRA GEMINI http://www.fas.org/spp/military/program/track/cobra_gemini.htm Tracking is performed at S-band. The X-Band frequency, essential for signature data collection and for supporting the wide bandwidth imaging requirement, is not well-suited for initial target acquisition or tracking complexes which have significant spatial separation. At S-Band, the area of the beam is ten times greater than at X-Band and results in an excellent acquisition and tracking capability. X-band monopulse is not being considered due to cost and complications to feed and receiver design. The maximum range window to be covered in bow-tie search mode is 1200 km. In the nominal mission scenario this window will extend from 300 km range to 1500 km range with 1 second dwell [1 second of noncoherent integration].

milstar: http://www.fas.org/spp/military/program/nssrm/initiatives/cobragem.htm U) The system collects dual frequency, high precision metric and signature intelligence (MASINT) data on targets of interest. The S- and X-band transmitters are phase-coherent, broadband power amplifiers, which use CPI high power Cavity Coupled Traveling Wave Tubes (CCTWTs). Both frequencies are transmitted through a dual-band Cassegrain feed and a common 5-meter aperture parabolic dish antenna. Four S-band tubes provide 50kW average power and one X-band tube produces 35kW average power. The S-band radar has a beam width of 1.24 degrees. S-Band performs surveillance (target detection and acquisition), narrow-band tracking, and wide-band imaging. The X-band radar has a beam width of 0.4 degrees that is centered in the S-band field of view. X-Band is slaved to the S-band tracker, and collects narrow-band and wide-band metric data as well as wide-band imaging data. (U) The system uses super-hetrodyne receivers. The S-band system uses a double-down conversation receiver, while the X-band system uses a triple down-conversion receiver. The instantaneous bandwidth is 300 MHz and 1GHz at S- and X-band, respectively. Both receivers use High Electron Mobility Transistor (HEMT) amplifiers. (U) The main computer is a Silicon Graphics' Power Challenge XL. It runs the IRIX 6.2 real-time UNIX operating system. The console and displays are made up of six Silicon Graphics' INDX Graphics Workstations which use R-4600 processing units.

milstar: Description (U): (U) The system collects dual frequency (S- and X-band), high precision metric and signature data on targets of interest. The S-band radar uses a mission profile to perform surveillance (target detection and acquisition), tracking, object classification, and wide or narrow band data collection. A wide repertoire of transmitter waveforms is available to aid in target discrimination and analysis. The X-band radar can perform wide band data collection on manually designated objects from the S-band radar. (U) The S-band phased array consists of 12,288 active independent antenna elements. The S-band radar has a 45-degree maximum instantaneous field of view. The phased array is mounted in one face of a nearly cubical (30-foot) rotating turret that houses the transmitter, microwave circuits, and the inertial navigation unit. The S-band transmitter is composed of 16 broadband Traveling Wave Tube (TWT) power amplifiers. (U) The X-band radar is composed of a 30 foot parabolic dish, horn and subreflector mounted on a pedestal. Some of the X-band electronics, including the TWT Power amplifiers, are in the on-mount room and are fed by flexible cables from equipment located on a lower deck of the ship. (U) The S-band and X-band radars are controlled by a single CYBER 170 mainframe computer system. A second CYBER is available as backup. The CYBERs are of 1973 vintage. To ensure future system sustainability and maintainability, much of COBRA JUDY's data processing and RF subsystem equipment is scheduled to be replaced with modern (COBRA GEMINI) technologies during FY98-02. (U) Mission data is provided to the National Air Intelligence Center (NAIC) for reduction and analysis. http://www.fas.org/spp/military/program/nssrm/initiatives/cobrajud.htm

milstar: Electronic Systems Center is developing a program that will result in what is believed to be the first dual-band, sea- and land-based radar system. The Cobra Gemini program will acquire three X- and S-band radar systems that can detect, acquire, track and collect both high-precision metric and signature data on targets of interest. CG is designed to be transportable and capable of operating anywhere in the world in either a land or sea-based mode. This program is included with other funding in Program Element 31315. Properly deployed ship-based radars with ranges of about 2000 km can provide a forward-based radar missile defense interceptor commit function against many of the potential threats to the US. These radars can remain silent until cued by DSP or SBIRS-High. Because they would be difficult to target due to mobility and unknown location of ships, they would add robustness against defense suppression attacks, particularly before SBIRS-Low is available. Sea-based radars could be added to the NMD architecture to provide robustness against certain defense suppression attacks before SBIRS-Low is available, and in some scenarios, to provide an earlier interceptor commit. Two such radars could be procured, installed on existing ships, and integrated with NMD BM/C3 for a total cost of less than $0.5B. O&S costs for the ships would total about $0.03B/year. Tracking is performed at S-band. The X-Band frequency, essential for signature data collection and for supporting the wide bandwidth imaging requirement, is not well-suited for initial target acquisition or tracking complexes which have significant spatial separation. At S-Band, the area of the beam is ten times greater than at X-Band and results in an excellent acquisition and tracking capability. X-band monopulse is not being considered due to cost and complications to feed and receiver design. The maximum range window to be covered in bow-tie search mode is 1200 km. In the nominal mission scenario this window will extend from 300 km range to 1500 km range with 1 second dwell [1 second of noncoherent integration]. http://www.fas.org/spp/military/program/track/cobra_gemini.htm

milstar: COBRA DANE generates approximately 15.4 MW of peak RF power (0.92 MW average) from 96 Traveling Wave Tube (TWT) amplifiers arranged in 12 groups of 8. This power is radiated through 15,360 active array elements, which together with 19,408 inactive elements comprise the 94.5 ft diameter array face. (U) The system, designated AN/FPS-108, has a phased array L-Band antenna containing 15,360 radiating elements occupying 95% of the roughly 100 by 100 foot area of one face of the building housing the system. The antenna is oriented toward the west, monitoring the northern Pacific missile test areas. http://www.fas.org/spp/military/program/nssrm/initiatives/cobradan.htm 1215 mgz -1400 mgz ######################## Razreschenie wische w 6 raz po srawneniju s Pave Paws 420-450 mgz ################################################# http://en.wikipedia.org/wiki/Cobra_Dane First deployed in 1977, the AN/FPS-108 radar operates in the 1215-1400 MHz band using a 29m phased array antenna. The primary mission is to track and collect data on foreign intercontinental ballistic missile (ICBM) and submarine launched ballistic missile (SLBM) test launches to the Kamchatka impact area and the broad ocean impact areas in the Pacific Ocean. The metric and signature data collected support START 2 and INF treaty monitoring, and scientific and technical intelligence efforts. http://www.fas.org/spp/military/program/track/cobra_dane.htm Dlja srawnenija s Cobra Dane Pave Paws -moschnost* i razreschenie nize http://www.fas.org/spp/military/program/track/pavepaws.htm Peak Power 1,792 active elements at 325 watts = 582.4 kilowatts (kW) Duty Factor 25% (11% search, 14% track) Average Power 145.6 kW Effective Transmit Gain 37.92 decibel (dB) Active Radar Diameter 22.1 meters Frequency 420 megahertz (MHz) to 450 MHz Radar Detection Range 5,556 kilometers (3,000 nautical miles) Wavelength 0.69 meters at 435 MHz Sidelobes -20 dB (first), -30 dB (second), -38 dB (root mean square) Face Tilt 20 degrees Number of Faces 2 3 dB Beam Width 2.2 degrees

milstar: http://www.fas.org/spp/military/program/track/gao-03-600.pdf

milstar: SBX radar ,X band ,AFAR s nepolnim zapolneniem ( 10% ) 68 000 elementow predpolozitelno 1 megawatt srednej ( GaAS 16 watt X band dlaj woennogo primenenija www.triquint.com) http://www.youtube.com/watch?v=xMk5J1XVj1I http://www.youtube.com/watch?v=ZzFOS8JOScI&feature=related http://www.youtube.com/watch?v=0vAlnRODzeU rjad foto http://www.fas.org/man/eprint/sbx-v2.pdf It typically cruises at about 7 knots, although it can go a little faster, can semi-submerse for extra stability and can operate in the roughest seas — sea states 8 and 9, Arn said. We needed a minimum of 50-foot depth. "We spend over 300 days a year at sea. It's maneuverable and has been all over the Pacific. It tracks small objects at very large, very long distances. You could put the SBX in Chesapeake Bay and it can track a baseball hit high outside Safeco Field. Radar is an 85-foot octagonal, 2100 tons." The platform submerges over 70 feet when at sea. "It's extremely important," he said of the radar. "This is an integral part of the ballistic missile defense system. It gives the ability to discriminate between what is a lethal object vs. what is a decoy or debris. There is only one. This is one of a kind. It moves on its own, coming in here about 7 knots. It can move slightly faster. It performs extremely well in high winds and waves. "It can berth 100 folks, but typically the crew is 85 to 90. This is contract (civilian) manned and operated. We have a contract with Boeing. Retired Air Force Lt. Gen. Henry Obering, who until recently headed the Missile Defense Agency, said the SBX would have gathered data other U.S. systems could not. "The sea-based X-band radar is clearly without a doubt the most powerful and capable sensor in all of our missile defense inventory," he said. "It is three or four more times powerful than other radars" in Asia, including Aegis-equipped ships, a Cobra Dane early warning radar in Alaska and a small X-band radar in northern Japan, he said. MOSS CS-50 maritime platform leaves Sevmash shipyard Posted by: Admin on Oct 08, 2008 - 03:15 MOSS CS-50 maritime platform has left the water area of Sevmash shipyard, the company’s press center informs. Upon completion of the customs and border control at the outer harbor of Archangelsk seaport MOSS CS-50 will sail to Great Britain. It is already the second platform of such type built at OAO “PO “Sevmash”. On the 23rd of September 2008 OAO “PO “Sevmash” shipbuilders handed over the second maritime platform MOSS CS-50. The first object was commissioned in September 2007 . “Today we carry on negotiations regarding the third and following platforms. We hope to receive orders from foreign and native companies,” Director General of Sevmash Nikolay Kalistratov said. Design-automation system is implemented, procedures of complex welds manufacturing, large sections mounting are developed in order to build MOSS platforms at OAO “PO. “Sevmash”. These engineering solutions allowed platform assembly afloat within 3.5 months. This is an optimum period of performing such operation at Russian shipyards ”We have made sure that in future Sevmash can build not only platforms with free deck, but also complete drilling platforms”, – noticed president of design bureau “Moss Maritime AS” Per Herbert Christensen”. MOSS CS-50 maritime platform refers to the 6th generation of maritime semi-submerged platforms. ########################################### Dimensions 118Ч70Ч40 meters, weight 15 thou.tons. Platform is universal, with free deck where any equipment can be placed. http://en.wikipedia.org/wiki/Sea-based_X-band_Radar The Sea-Based X-Band Radar is mounted on a fifth generation Norwegian-designed, Russian-built CS-50 semi-submersible twin-hulled oil-drilling platform. The hull was originally built at Vyborg Shipyard, hull number 101. Conversion of the platform was carried out at the AmFELS yard in Brownsville, Texas; the radar mount was built and mounted on the platform at the Kiewit yard in Ingleside, Texas, near Corpus Christi. It is nominally based at Adak Island in Alaska (though, as of early 2011, has never put into port at Adak) but can roam over the Pacific Ocean to detect incoming ballistic missiles. The platform is classed by ABS and has the IMO number of 8765412. In addition to the power consumed by the radar, the thrusters which make the platform self-propelled are all electric and require substantial power (maximum platform speed is in the neighborhood of 8 knots). To support this and all other electrical equipment, the platform currently has six, 3.6 megawatt generators (12 cylinder Caterpillar diesels). The generators are in two compartments, one port and one starboard. The maximum power currently drawn is roughly 12 megawatts, ############################# The radar antenna itself is described as being 384 square meters -------------------------------------------------------------------------- T.e. sredn. moschnost w ljubom sluchae nize 6 megawatt and there are plans to expand the number of generators to eight, so that one entire compartment could be lost and the platform would still continue to operate at full capability.

milstar: Система ПРО Москвы А-135 боеготова, ее модернизация позволит обеспечить надежную защиту столицы [info]i_korotchenko August 20th, 20:01 Недавние панические заявления Ашурбейли о небоеготовности ПРО Москвы следует отнести, вероятно, к своеобразному "рыхлению почвы", которое "Рауфович" провел в преддверии попытки, начиная с сентября, "потянуть одеяло на себя" в вопросе формирования Концерна ВКО. Попытка заранее оказалась с негодными средствами. И в самом деле - ашурбейливский демарш ударил сразу по президенту, премьер-министру и министру обороны, которые в первую очередь отвечают за обороноспособность государства. Так что сегодня Ашурбейли - это своеобразный "политический труп" - с точки зрения его перспектив сформировать и возглавить что-либо подобное. Что же касается системы ПРО Москвы А-135, то как минимум еще несколько десятков лет (после плановой модернизации) она будет одним из важных элементов системы воздушно-космической обороны России. (фото пресс-службы Концерна ПВО "Алмаз-Антей") rjad foto http://i-korotchenko.livejournal.com/265320.html#cutid1 Esli impulsnaja moschnost' 80 megawatt ,to srednjaa s xoroschim chansom boslche megawatta ################################################################# Predpolozitelno X bnd ,PFAR s nepolnim zapolneniem (10-15%) 250 000 vibratorov 4 *18 metrow diametrom ( kanal celi) 4 *10 metrow (kanal izdelija) Dostoinstwa Moschnost i dimaetr mozno sdelat rekordnimi ,w otlichii ot mobilnix ############################################# Nedostatok -ljuboj stazionarnij objekt s wisokim chasom budet porazen ################################################## silnim protivnikom ############# SBX dlja obespechenija stzabilnosti dlja 1 antenni potrebowalos 50 000 tonn wodoizmeschenija ############################################################### Cobra Gemini dlja antenni diametrom 5 metrow 2000 tonn Wes zerkala antenni srawnitelno nebolschnoj ,esli ona iz titana Haystck 37.5 metra diametrom iz titana wsego 50 tonn 18 metrow sootw 12.5 tonni

milstar: Testing of System A-135 at Sary Shagan from 1976 to 1980 confirmed the performance parameters of the system, and it was operational in 1989. Construction of the new launch sites began around Moscow, including the construction of the new 5N20 Don-2N (PILL BOX) phased-array radar and battle management facility, located at 56°10'23.81"N 37°46'11.87"E. The Don-2N is a large phased array system and consists of four phased arrays mounted on a pyramidal structure housing the command and control elements. Its function is to perform target tracking and missile guidance, in the same manner that the Dunai-series radars served System A-35 and System A-35M. Initial target acquisition is handled by the BMEW network, with target track handoffs to the Don-2N being accomplished to perform intercepts. The Don-2N can be seen in the image below: http://www.ausairpower.net/APA-Rus-ABM-Systems.html It is interesting to note that with the inconsistent deployment of the 53T6 missiles, System A-135 falls exactly 16 interceptors short of the limitations imposed by the 1972 ABM Treaty. It is possible that there were plans for two more 8 silo 51T6 interceptor sites, but that they were not proceeded with, or that there were similar unfinished plans for another 16-silo 53T6 site.

milstar: Darjal srednjaa(! ne impulsnaya) moschnost sootw predpolozitelno wischechem 1 megawatt w diapazone 150-200 mhz ############################################################ The transmitter antenna of the radar had dimensions of 30 x 40 meters. The antenna included many centrally controlled transmitters within it. The receiving antenna had dimensions of 80 x 80 meters. The radar worked in the meter bandwidth. [url=http://iis-db.stanford.edu/pubs/20734/Podvig-S&GS.pdf]http://iis-db.stanford.edu/pubs/20734/Podvig-S&GS.pdf[/url] Dannie Podwiga pod somneniem (maloverojatno chto Don-2NP imeetdlinuwolni 1 sm=0.01metra,chastota 30 ghz skoree 8 ghz) http://www.globalsecurity.org/wmd/world/russia/daryal.htm http://en.wikipedia.org/wiki/Qabala_Radar

milstar: Dannie po RLS Don -2NP http://vko.ru/database/images/pictures/archive/1103/70-01.jpg Diapazon -ne ykazan (predpolozitelno X) Tip - ne ykzano(predpolozitelno PFAR s nepolnim zapolneniem) Moschnost- 0.82 megawatt/78 megawatt Kanalnost- 32 ( na nix delitsja moschnsot 0.78 megawatt) Tochnost po dalnosti -10 metrow Tochnost po yglam -2 minuti Haystack is also used by MIT Lincoln Laboratory as a radar which acts as a contributing sensor to the United States Space Surveillance Network and as a radar technology testbed. The Haystack Radar utilizes the 37 m Haystack antenna to generate radar images of satellites orbiting the Earth. These images are used by the United States Strategic Command to assess satellite structure, mission, and status. The radar is also used to collect data on orbiting space debris. Orbiting debris could be a threat to the International Space Station, the Space Shuttle, and other satellites. The Haystack Radar has been the major contributor to understanding the space debris environment in the 1-10 cm size regime. The Haystack Radar currently operates in the 9.5 GHz to 10.5 GHz frequency band. As part of the upgrade, a millimeter-wave radar that operates in the 92 GHz to 100 GHz frequency band will be added to the system. The new radar will use an innovative transmitter design and signal processing to achieve image resolution that is about 10 times better than what is currently available. The existing 37 meter (120 foot) antenna will be replaced by a new dish, accurate to 0.1 millimeter (0.004 inch) over its entire surface, which is a factor of 3 better than at present. The new antenna will permit the Haystack radio-telescope to operate in the 150 GHz range or higher, making it a premier radio-astronomy facility. L-3 ESSCO of Concord, MA, has been selected to design, fabricate, and install the new antenna http://www.haystack.edu/obs/haystack/LincolnUpgrade.pdf Srednjaa moschnost w X band 200 kwt . Ysilitel w vertex 2.4 metra *2.4 metra*3.6 metra ############################################################# pri polose 1000 mgz ( razr. sposobnost 250 mm ) ################################## Pri polose 8000 mgz i extrapoljazii polosi -do 10 mm (mozno chitat nomera awtomaschini ,esli bi ona letala na orbite)

milstar: ALCOR,MMW,Haystack & ALCOR. Simple tracking radars can collect metric data (that is, determine the location and trajectory of a target) but can do little in the way of processing signature data (for example, determine target size or shape). Interest in wideband measurements resulted from the need to reject small decoys that might be otherwise credible targets (that is, they might have credible slowdown and present warhead-like radar cross section [RCS] levels to a narrowband radar). Initial work on wideband radars focused on the hardware required to generate and process high-resolution waveforms [10]. Initial tests of ALCOR in the 1970s showed that length measurements were feasible and ################################## could provide important discrimination information against penaids such as small decoys. Later in this period, Laboratory staff developed and installed surface acoustic wave (SAW) devices for pulse compression. http://www.ll.mit.edu/publications/journal/pdf/vol13_no1/13_1overview.pdf In particular, effective discrimination against strategic threats requires a means of dealing with potentially large numbers of small decoys and penaids at high altitudes well beyond the level where atmospheric deceleration becomes a discriminator between heavy and lightweight objects. ###################### http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf The truth of this claim became abundantly clear shortly after ALCOR came on line. The space-surveillance community had arranged to enlist ALCOR in tracking satellites on a noninterference basis. Then in 1970 China launched its first satellite, which was observed by ALCOR. Analysis of ALCOR images of the booster rocket body revealed the dimensions of this object. This information was of great interest to the Department of Defense because it gave insight into the size and payload capacity of the forthcoming Chinese ICBMs. This observation, which was a historic first for the defense establishment, resulted in satellite imaging missions becoming an integral part of ALCOR operations. More recently, the use of wideband phased-array #################################### Ix raz. sposbnost ogranichena diapazonom X i sootw. polosoj signala 1000 mgz Dlaj realizacii polnoj PFAR ili AFAR na 35 ghz nuzno w 16 raz bolsche elementow na 35 ghz chem w X diapazoen ( X -band 2750 elemntow na kw. metr) ... radars has greatly facilitated the transition of BMD weapons systems from nuclear to non-nuclear, hit-tokill interception techniques. These radars use modern solid state microwave technology and high-capacity high-speed computers and signal processors, all of which permit near-real-time imaging and discrimination processing on a large number of targets. http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf str.4 ALCOR, shown in Figure 2, was the first highpower, long-range, wideband field radar system. It became operational at Kwajalein Atoll in 1970, and was probably the first wideband radar in the world to reach that status, Figure 2(a) shows the sixty-eight-foot-diameter ALCOR radome, and Figure 2(b) shows the forty-foot ALCOR antenna and its pedestal inside the radome. ALCOR operates at C-band (5672 MHz) with a signal bandwidth of 512 MHz that yields a range resolution of 0.5 m. (The ALCOR signal was heavily weighted to produce low range sidelobes with the concurrent broadening of the resolution.) Its widebandwidth waveform is a 10-мsec pulse linearly swept over the 512-MHz frequency range. High signal-tonoise ratio of 23 dB per pulse on a one-square-meter target at a range of a thousand kilometers is achieved with a high-power transmitter (3 MW peak and 6 kW average) and a forty-foot-diameter antenna. Cross-range resolution comparable to range resolution is achievable with Doppler processing for targets rotating at least 3° in the observation time. The pulserepetition frequency of this waveform is two hundred pulses per second. This is accomplished in a timebandwidth exchange technique (originated at the Airborne Instrument Laboratory, in Mineola, New York) called stretch processing [4], which retains range resolution but restricts range coverage to a narrow thirtymeter window. In order to acquire and track targets and designate desired targets to the thirty-meter wideband window, ALCOR has a narrowband waveform with a duration of 10.2 мsec and bandwidth of 6 MHz. This narrowband waveform has a much larger 2.5-km range data window. The ALCOR beamwidth is 5.2 milliradians, or 0.3°. This beamwidth, together with a high-performance antenna mount, enables ALCOR to produce precision target trajectories and provide high-quality designation data to the other Kwajalein radars. This very narrow beam also caused some real challenges in target search and acquisition.

milstar: http://www.redstar.ru/2011/08/23_08/2_03.html «Сердце» системы ПРО - многофункциональная радиолокационная станция (РЛС) «Дон-2Н». Красный диплом Московского военного института радиоэлектроники Космических войск стал для Евгения «пропуском» на систему ПРО. Сегодня, спустя два года после окончания вуза, штатная должность Ерёмина - заместитель начальника штаба по боевому управлению, это для молодого офицера очень хороший старт. старший лейтенант Ерёмин сегодня получает со всеми надбавками 70 тысяч рублей.

milstar: 1.HAX auxilary radar ydalso poluchit polosu 2000 mhz w Ku band ...13-15 ghz ##################################################### 2.Radar The Raytheon AN/APQ-181 covert strike radar, operating at J band (Ku band), ################################################## is a multi-purpose radar with terrain following and terrain avoidance modes. Testing at Edwards Air Force Base has demonstrated reliable terrain following at altitudes down to 200ft. In April, 2009 Northrop Grumman Corporation delivered to the US Air Force the first operational B-2 Spirit stealth bomber to be equipped with newly modernised radar. The aircraft was officially handed off to the air force on at Whiteman Air Force Base, the operational home of the B-2 fleet and the 509th Bomb Wing. The updated aircraft will be used by air force to conduct additional field testing of the radar, and the data gathered from these decisions will support future fielding decisions. The B-2 radar modernisation programme replaces the aircraft's original radar system with one that incorporates technology improvements that have occurred since the B-2 was originally designed in the early 1980s. In November 2002, Raytheon was awarded a contract to develop a new Ku-band AESA (active electronically scanned array) antenna for the B-2 radar ############################################################################################## to avoid interference with commercial satellite systems after 2007. Flight tests with new radar began in October 2007 and will continue in 2008. Installation of the new antenna on the B-2 fleet is to be completed by 2010.

milstar: The Haystack Auxiliary Radar, or HAX, came online in 1993. Operating at approximately 16 GHz, HAX provides potent satellite-imaging capability that can be used when the larger Haystack antenna must operate in a radio-astronomy mode. Both Haystack and HAX contribute data to a NASA-sponsored survey of orbital debris http://www.globalsecurity.org/space/systems/haystack.htm

milstar: PAR radar Safeguard , L(?) band http://srmsc.org/pdf/004430p0.pdf Missile site radar http://srmsc.org/pdf/004429p0.pdf 4 face po 4 metra dimetrom ,kazdaja 5000 phase array elementow ,S-band s polnim zapolneniem processsobstw. dannie i dannie ot PAR MSR receiver 3 kanala summarnij kanal+ 2 kanala raznici implementirowan 4 kanal Q dlja sidelobe blanking 30 mhz IF/pch (kak i w RLS programmi Appolo) ...sootw .4 kanala IF/pch s nesuschej 30 mhz http://srmsc.org/ref1020.html#p2ch8 MSR range 300 mil = okolo 500 km PAR range 1800 mill = okolo 2900 km

milstar: http://srmsc.org/pdf/004423p0.pdf Chustw target track radar -110 dbm oxlazdaemioj maser RF amplifier nominalno cel 0.1 kw.metra 1. Zeus Acquisition radar -Defense centr Kazdaya battareya ( ywelich do 3 batterj -division ------------------------ 2. Discrimination radar -minimum 1 ,maximum -3 3. Target track radar - minimum 3 ,maximum -10 4. Missile track radar -minimum 6 ,maximum -18 5. Raket - minimum -24 ,maximum -72

milstar: ZAR radarperedatchik 3 sekzii , kazdaja po 600 kwt sredenej ,raznieantennidlja priemai peredachi ,870-960 mhz , antenni okolo 25 metrow * 0.75 metra chirina lucha 0.9° Azimut * 75° elevation,28 db ysilenie ispolzowanna LCHM - dlinnij puls-maximalnij rang - korotkij -maximalnoe razreschenie 97.7 pulsa pro sekundu 650 microsek ,LCHM -400 khz menjaetsja w kazdom pulse ---------------------- primenie antenni okolo 25 metrow diametrom 0.9° azimuti i elevazija 41 db ysilenie ----------------- 3.5 db noise (T=720° K) ,231 priemnik 600 nm dalnost (bolee 1100 km )dlj 90% verojatnosti generazii reporta cel 0.1 kw.metra na odno skanirowanie Razreschenie = 250 metrow

milstar: Discrimination radar ,6.7 metra =D , subreflector 4.5 metra 1270-1400 mhz ,78 kwt sredenej /40 megawat impulsnoj 97.7 pulsa w sek ,20 microsec duration 2* klystrona LCHM -10 mhz w pulse Schirina lucha ot 2.5 ° do 20° ,menjaetsja dwizeniem subreflectora na 0.45 metra ysilenie sootw 36 db -18 db maser 120° K IF = 30 mhz range dlja o.1 kw.metra EPR ################## pri 20° = 85 nm w centr =bolee 155 km ,60 nm at -3 db points of beam pri 2.5° = 700 nm primerno 1300 km ,500 nm at -3 db pointsof beam (22 nmi cloud coverage) razreschenie range -5 yard yglovoe - 10% of off axis angle (0.4 mil minimum)

milstar: http://ria.ru/tv_defense_safety/20120504/641160640.html

milstar: http://www.banthebomb.org/archives/wmd/ch4mosc.htm 4.1 Effect of an attack on 16 command bunkers in and around Moscow using the 48 Trident warheads from one submarine The submarine on patrol will be prepared to launch an attack with all its 14 missiles and 48 nuclear warheads. This example assumes that all of these would be targeted at command centres in and around Moscow. It is likely that at least 2 warheads would be detonated at each command post. The target plan will take into account the fact that some incoming warheads could be destroyed by Russian ABM defences. For this reason it is assumed that 3 warheads are aimed at each bunker.41 It should be noted that while this may be the most likely way that Trident would be used, it is not the most destructive. If the 48 warheads were aimed at 48 separate targets there would be substantially more casualties. The following is a list of 16 command posts against which Trident might be targeted.42 The table also shows how far each bunker is from the city centre of Moscow and in which direction it lies from the city centre.

milstar: This establishes two things: That the LRDR will operate at S-Band and that it will have a wide electronic scanning field of view (EFOV), here assumed to be ± 60 degrees. Each of the two LRDR antenna faces will be populated with large number of GaN transmit/receive (T/R) modules. For radars of this type, the T/R modules are the primary driver of a radar’s cost. The requirement for a wide EFOV sets the maximum spacing between the T/R modules. For an EFOV of ± 60º and a wavelength λ, the spacing between T/R modules in a square array must be 0.536λ or less in order to avoid grating lobes (essentially additional main beams).[13] This gives an antenna area 0.278λ2 per module. For an equilateral triangular module arrangement, the area per element is somewhat larger — 0.332λ2 per module. For short wavelengths and large antenna faces, these module spacing limitations can lead to requirements for very large numbers of modules. For example, the SBX’s antenna face has an active area of 249 m2. Assuming a frequency of 9.5 GHz (λ = 3.16 cm), a square module array and an EFOV = ±60º, about 870,000 modules would have been required to fully populate the antenna array, which would have been prohibitively expensive. In actual practice, the SBX uses a module spacing of about 2.35λ. Together with the use of other techniques to reduce grating lobes, this spacing reduces the required number of modules to about 45,000, but at the price of a very reduced EFOV of only about ±12º.[14] Figure 3. The SBX Antenna Inside its Radome. Image Source: MDA[15] The LRDR is intended primarily for precision tracking and discrimination. For such a radar, a standard figure of merit is its Power-Aperture-Gain (P-A-G) product. Assuming all else (noise figure, system losses, target radar cross section (RCS), etc…) is equal, an X-Band and an S-Band will obtain the same signal-to noise ratio on a target if: https://mostlymissiledefense.com/2019/01/30/the-lrdr-not-the-best-discrimination-money-can-buy-january-30-2019/

milstar: "В перспективе будет создано сплошное радиолокационное поле по аэродинамическим целям, аналогично полю системы предупреждения о ракетном нападении", - сказали в ведомстве. В новую систему войдут загоризонтные станции типа "Контейнер", первая из которых заступила на боевое дежурство 1 декабря в Мордовии. Новая РЛС способна отследить массовый взлет авиации, пуск крылатых ракет или старт гиперзвуковых аппаратов на дальностях в 2 тыс. км от западных и южных границ России. Таким образом обеспечивается время на отражение возможного удара по объектам на территории страны. Следующая станция подобного типа должна прикрыть арктическое направление. "Дальнейшее развитие возможно в сторону контроля Арктики, чем мы занимаемся, задача такая активно рассматривается", - уточнил главный конструктор "Контейнера" Михаил Петров. Работа станций "Контейнер" основана на приеме радиосигнала, отраженного от ионосферы. В настоящее время в РФ создано сплошное радиолокационное поле системы предупреждения о ракетном нападении. В систему входят РЛС типа "Воронеж", их главная задача - отследить пуски баллистических ракет по российской территории. https://tass.ru/armiya-i-opk/7239631

milstar: тдельного внимания заслуживает станция «Дарьял». Пока среди всех российских РЛС СПРН она рекордсмен по своим возможностям. Именно «Дарьял» видит даже небольшие объекты на геостационарной орбите, и поэтому в настоящее время российское военное ведомство реализует амбициозный план по ее модернизации. https://vpk-news.ru/articles/53968

milstar: Мы обнаружим любую МБР, и агрессора настигнет ответный удар 30.10.2019 Уже сегодня сплошное радиолокационное поле системы предупреждения о ракетном нападении (СПРН) России позволяет обнаружить любую межконтинентальную баллистическую ракету, однако возможности СПРН постоянно совершенствуются – строятся новые станции, модернизируются существующие, разрабатываются перспективные системы обнаружения. Генеральный директор "НПК "Научно-исследовательский институт дальней радиосвязи"и Кирилл Макаров в интервью обозревателю РИА Новости Алексею Паньшину рассказал о планах по строительству загоризонтных РЛС нового поколения "Контейнер", о модернизации единственного радиооптического комплекса распознавания космических объектов "Крона", а также о продлении сроков службы станций семейства "Воронеж". Над чем сейчас работает институт? Мы традиционно занимаемся образцами вооружений для технической основы системы воздушно-космической обороны и предупреждения о ракетном нападении (СПРН). Последние наши разработки – это дециметровые станции высокой заводской готовности. При распаде СССР часть станций СПРН осталась за границей, была уничтожена и нам нужно было срочно восстанавливать сплошное радиолокационное поле по периметру границ РФ для обнаружения пусков межконтинентальных баллистических ракет, поэтому было принято решение о разработке новых станций. Они разрабатываются в метровом диапазоне, ими занимается «РТИ им. академика А.Л. Минца», и дециметровом - наш институт дальней радиосвязи. Первый пилотный проект – это станция метрового диапазона в Лехтуси, а дальше пошла серия станций, в том числе нашей разработки. Второе наше направление – это станции загоризонтного обнаружения. Это направление идет еще из Советского Союза, где создавались такие станции, как «Дуга». Они предназначались для обнаружения баллистических ракет, но сделать это было сложно, потому что станция получала информацию после третьего отражения от ионосферы. Сейчас, учитывая тот задел, мы создаем семейство загоризонтных РЛС типа «Контейнер». Первая станция прошла предварительные испытания и находится на государственных испытаниях, мы надеемся, что до конца 2019 года первый «Контейнер» будет передан Вооруженным силам. Кроме того, мы создаем станции поверхностной волны для обнаружения кораблей и воздушных объектов. Это станции типа «Подсолнух». Они уже находятся в эксплуатации, стоят на трех направлениях – на Дальнем Востоке, на Каспии и на Балтике. Кроме того, мы занимаемся разработками новых направлений – это радиофотоника и связанные с ней технологии, а также терагерцовое излучение. Какие типы целей может обнаруживать РЛС ЗГО «Контейнер»? Новая РЛС «Контейнер» предназначена для обнаружения всех типов аэродинамических целей. К ним относятся самолеты боевой, стратегической авиации, крылатые ракеты, гиперзвуковые летательные аппараты и так далее. Станция использует явление отражения радиоволн декаметрового диапазона от ионосферы. Но у этой РЛС есть так называемая мертвая зона. Она составляет 900 км, поэтому было принято решение о расположении станции в глубине страны, это позволяет находится станции в безопасности и контролировать воздушное пространство сопредельных государств. Сколько всего таких станций планируется? Вообще, их планируется четыре. Первая на западе, вторая на востоке. Кроме того, планируется создание на станций для северо-западного и южного направлений. В политику ударяться не хочется, но последние заявления США вынуждают Россию реагировать адекватно. Я имею ввиду космические угрозы. В настоящее время работает радиооптический комплекс распознавания космических объектов "Крона". Будет ли он модернизирован? Или, быть может, появится что-то новое на его замену? Контролем космического пространства занимается не только РОКР КО «Крона», а все РЛС высокой заводской готовности - что станции нашей разработки, что РЛС разработки РТИ им. академика А.Л. Минца. Но «Крона» - это более детальный мониторинг космического пространства. Она находится на боевом дежурстве, проводится ее модернизация, она постоянно контролирует космическое пространство и при помощи нее ведется каталог космических объектов. Уже неоднократно сообщалось, что сплошное радиолокационное поле системы предупреждения о ракетном нападении практически воссоздано. Расскажите об этом поподробнее. Что это значит? Мы должны понимать, что это поле существует для обнаружения межконтинентальных ракет. Это те ракеты, которые есть и у нас, и у наших партнеров в шахтных установках или на подводных лодках. На сегодня такое поле создано и оно замкнуто, но задача была поставлена верховным главнокомандующим создать двухдиапазонное поле – метровое и дециметровое. На сегодняшний день есть участки метрового поля, есть – дециметрового. А сейчас для того, чтобы осуществить полное перекрытие мы создаем свою станцию в Мурманске, а РТИ им Минца завершает создание станции в Воркуте. Но существующее ныне радиолокационное поле, это должны знать все наши партнеры, обнаружит любую межконтинентальную баллистическую ракету и агрессора настигнет ответный удар. На сколько лет вперед вы оцените потенциал РЛС ВЗГ типа "Воронеж"? Сколько лет они смогут удовлетворять потребностям военных по своим ТТХ? Согласно руководящим документам, срок службы станции 10 лет. Но это не значит, что через 10 лет те миллиарды, которые были затрачены на их создание, уйдут в песок. Постоянно проводится модернизация. Первой станции в Лехтуси был продлен срок службы на 5 лет. Максимальный срок службы этих станций заложенный конструкторами около 25 лет. Потом нужно будет создавать РЛС по новой технологии, потому что поменяются средства воздушно-космического нападения, их тактика и так далее. Мы к этому идем. Мы в каждой станции вводим новые элементы, что в перспективе позволит создать принципиально новую систему. Уже сейчас каждая станция не похожа на предыдущую. У вас на сайте есть несколько интересных ЗГ РЛС ПВ, в частности, "Подсолнух-Э" и "Лагуна". Есть ли заказчики на них? Есть часть стран, которые заинтересованы в приобретении таких комплексов. Но конкретных заказов пока нет. Мы думаем, что в течение двух лет мы на какие-то контракты выйдем. Работаете ли вы в направлении малых РЛС? Мы работаем над определенной станцией для обнаружения низколетящих целей, в числе которых дроны, способные нести угрозу. Сможет ли такая станция обнаруживать самодельные беспилотники, которые не может засечь РЛС системы противовоздушной обороны? Мы никогда не специализировались на создании РЛС обнаружения аэродинамических целей по каким-либо сигналам, этим занимается радиотехническая разведка. Мы занимаемся радиолокационной разведкой. Любой материал имеет эффективную поверхность рассеивания, пусть он деревянный, пусть пластиковый. То, что мы делаем, позволит обнаруживать в том числе и такие беспилотники. Как обстоит вопрос с импортозамещением, учитывая критически важные сферы, в которых работает ваша продукция? Это серьезный вопрос для всех предприятий, которые работают в сфере гособоронзаказа. Мы занимаемся этим. Что-то мы можем замещать, это в районе 70 процентов, но что-то мы пока заместить не можем. Тем не менее, в соответствии с федеральной программой импортозамещения, институт пытается перейти на отечественное оборудование. Когда будет осуществлен переход на сто процентное применение отечественной продукции? Трудно поставить какой-то рубеж, мы делаем для этого все возможное. Что предпринимаете в рамках диверсификации? Наш институт всю жизнь занимался созданием частей систем вооружений для армии. Это наша основная работа. Но если рассматривать то, что мы делаем для гражданского рынка, то это, к примеру, посадочный локатор, который может применяться на различных аэродромах. Сейчас, как я уже упоминал, мы в начале пути по изучению свойств терагерцового диапазона. В рамках этой работы мы пытаемся создать досмотровый комплекс, который позволит обнаруживать запрещенные к провозу предметы, в том числе взрывчатые вещества, оружие, которые пытается пронести человек куда-либо. Сейчас в аэропортах и на ж/д вокзалах стоят подобные комплексы, но они используют рентгеновское излучение, которое влияет на человека. А создаваемый комплекс практически не влияет на человека. Кроме того, он устанавливается скрытно, то есть человек не будет видеть, контролируют его или нет. У него намного больше дальность действия, чем у рентгеновских систем. Но это пока только разработка. У нас есть лабораторная установка, до конца года попытаемся привести ее в демонстрационное исполнение, чтобы предлагать заказчикам. https://www.aorti.ru/media/news/kirill-makarov-obnaruzhim-lyubuyu-mbr-i-agressora-nastignet-otvetnyy-udar/

milstar: https://mostlymissiledefense.com/2016/07/17/thaad-radar-ranges-july-17-2018/ https://mostlymissiledefense.com/2012/09/21/ballistic-missile-defense-radar-range-calculations-for-the-antpy-2-x-band-and-nas-proposed-gbx-radars-september-21-2012/#more-420 Модификация AN/SPY 3.1-3.5 ghz и THAAD обе используют inverse SAR и могут быть эффективны для противоракетной обороны но главный недостаток площадь апертуры недостаточна дальность соответственно выдвигаются предложения о удвоении апертуры THAAD кроме то в условиях плохой погоды и низких углах места дальность РЛС X band ( 8-12 ghz )падает в 5-6 раз можно сконструировать РЛС L Band для плохих погодных условий и мобильную с высокой разрешающей способностью полосой сигнала 500 mhz 750-1250 mhz апертурой 16x 6 метров но это потребует ее установки на MZKT от комплекса Ярс кроме того возможно удвоить апертуры электронным методом два комплекса рядом и мультигигабитный канал связи соответствующие ADC для подобных РЛС стоят 647 $ https://www.analog.com/media/en/technical-documentation/data-sheets/AD9625.pdf контраргументы атака в группе , заход на Цель на фоне вспышки от ядерного взрыва резко повышается шумовая температура РЛС While the angular resolution of missile defense radars is typically far too poor to separate objects in the cross-range directions unless they are 100s of meters or even many kilometers apart, their range resolution can be a fraction of a meter. The range resolution of a radar is largely determined by its bandwidth https://mostlymissiledefense.com/2012/08/29/ballistic-missile-defense-why-the-current-gmd-systems-radars-cant-discriminate-august-28-2012/ ############################################## U.S. X-band radars operate at a center frequency of about 10 GHz and reportedly have a bandwidth of 1 GHz.[2] According to the above formula, this bandwidth would then give a minimum range resolution of ∆R = 0.15 m = 15 cm. In practice, the actual minimum resolution is often somewhat greater: the U.S. X-band missile defense radars reportedly have a range resolution of about 25 cm https://mostlymissiledefense.com/2012/08/29/ballistic-missile-defense-why-the-current-gmd-systems-radars-cant-discriminate-august-28-2012/ ##################################################### AN/SPY-1 Radar” using a 400 MHz wideband waveform constructed from ten 40 MHz bandwidth pulses frequency jumping from 3.1 to 3.5 GHz.[8] A 2002 paper cites a bandwidth of 300 MHz for Aegis.[9] Such a bandwidth would likely permit a range resolution of about 0.5-1.0 meters. The 4.0.1 version of the Aegis Ballistic Missile Defense system, which is now entering service, added an adjunct BMD Signal Processor that, among other things, allows the formation of two-dimensional inverse synthetic aperture images with better resolution than had previously been possible, which implies a wideband capability.[7] https://mostlymissiledefense.com/2012/08/03/ballistic-missile-defense-the-aegis-spy-1-radar-august-3-2012/ ########################################## https://www.vpk-news.ru/articles/59750 AN/SPY-1 Radar” using a 400 MHz wideband waveform constructed from ten 40 MHz bandwidth pulses frequency jumping from 3.1 to 3.5 GHz.[8] A 2002 paper cites a bandwidth of 300 MHz for Aegis.[9] Such a bandwidth would likely permit a range resolution of about 0.5-1.0 meters. The 4.0.1 version of the Aegis Ballistic Missile Defense system, which is now entering service, added an adjunct BMD Signal Processor that, among other things, allows the formation of two-dimensional inverse synthetic aperture images with better resolution than had previously been possible, which implies a wideband capability.[7] https://mostlymissiledefense.com/2012/08/03/ballistic-missile-defense-the-aegis-spy-1-radar-august-3-2012/ ####################### L Band FPS 117 https://lockheedmartin.com/content/dam/lockheed-martin/rms/documents/ground-based-air-surveillance-radars/FPS-117-fact-sheet.pdf ABT Accuracy range <50m Height <762 m Azimuth < 0.18 ° ################# http://lesnovak.com/images/australia.pdf SAR is a radar that synthesizes a long aperture as anaircraft flies along its path. Thus, a SAR can achieve cross-range resolutions that could otherwise be attained only with along antenna. In SAR mode, the Lincoln Laboratory MMWradar has 1 ft by 1 ft resolution. To achieve 1 ft azimuthresolution, a synthetic aperture of approximately 150 m lengthis constructed by processing 1 sec of data as the plane flies.To achieve 1 ft range resolution, 600 MHz bandwidth pulsesare used ############## Almaz-Antey literature on the S-400 / SA-21 system states that compatible interfaces are available between the S-400 battery and the Gamma DE system. The azimuthal tracking accuracy of 0.17-0.2°, elevation accuracy of 0.2-0.3° and range accuracy of 60-100 metres make this radar eminently capable of providing midcourse guidance updates for a range of SAM systems. For comparison, the 64N6E Big Bird ( 2ghz )series used in the SA-20/21 has around twice the angular and range tracking error magnitude compared to the Gamma DE. http://ausairpower.net/APA-Rus-Low-Band-Radars.html#mozTocId228464 ############## https://www.globalsecurity.org/military/systems/ship/systems/an-spy-1.htm WEAKNESSES The system is designed for blue water and littoral operations however AN/SPY-1 configuration must be modified to look above the terrain to avoid causing excessive false targets from land clutter. These configuration changes may increase ship susceptibility to low and fast targets. Once a target is engaged and the initial salvo fired, WCS will not allow the target to be reengaged (second salvo) until a kill evaluation has been completed. AN/SPY-1 antenna height is lower than the AN/SPS-49 radar system resulting in reduced radar horizon. DDG-51 Class are not equipped with a AN/SPS-49 radar (no secondary air search radar) Must hold an AN/SPY-1 track. Cannot engage on a remote or AN/SPS-49 track unless equipped with CEC. ################ https://mostlymissiledefense.com/2019/05/22/new-aegis-radar-to-be-100-times-more-sensitive-than-current-radar-may-22-2019/ New Aegis Radar to be 100 Times More Sensitive than Current Radar (May 22, 2019) New Aegis Radar to be 100 Times More Sensitive than Current Radar (May 22, 2019) In my post of February 11, 2019, I discussed a number of planned new S-band radars, including the Navy’s Air and Missile Defense Radar (AMDR), which is scheduled to begin deployment on the Navy’s new Flight III Aegis destroyers in about 2023. In that discussion, I used the standard claim that the AMDR, also designated the SPY-6(V)1, would be about 15 dB = 30 times more sensitive than the current SPY-1 radar on U.S. Navy cruisers and destroyers. I also noted, however, that there were some recent indications the AMDR might be even more sensitive, possibly by a factor of 40-70 over the SPY-1. ######################## https://mostlymissiledefense.com/2019/02/12/https-mostlymissiledefense-com-new-s-band-missile-defense-radars-in-the-pacific-february-11-2018/ My post of January 30, 2019 discusses why S-band band was chosen over X-band (8-12 GHz, which could enable greater discrimination capability); it was basically a matter of cost. The bandwidth and range resolution of LRDR are also not publicly known; it seems possible the range resolution could be as low as 0.5 m or somewhat less. As with the TPY-2 X-band radar and the Aegis SPY-1, the LRDR will certainly have the capability to use Doppler measurements to form two-dimensional (or possibly even three-dimensional) images. ############# https://mostlymissiledefense.com/2012/08/29/ballistic-missile-defense-why-the-current-gmd-systems-radars-cant-discriminate-august-28-2012/ Ballistic Missile Defense: Why the Current GMD System’s Radars Can’t Discriminate (August 28, 2012) The resolution of a radar is the minimum separation between two objects for which the radar can determine that there are two objects present rather than just one. Thus if two objects are separated by 5 meters in range, a radar with a range resolution of one meter would not only be able to identify that there were two objects present (assuming there is adequate signal-to-noise), but also be able to measure the difference in range between the two objects and to estimate the radar cross section of each object. On the other hand, if the radar range resolution was 20 meters, it would see the two objects as a single target. For a given target, if the range resolution of the radar is significantly less than the length of the target, then it can attempt measure the length of the target (length here means the dimension of the target along the range axis). This information could be used, for example, to distinguish between a 2 meter long warhead and an eight meter long rocket booster stage, as shown in Figure 2 below. If the range resolution of the radar is small enough, it could potentially measure the position and radar cross section of radar scatterers along the length of the target, thus creating a range profile of the target that might be further useful in identifying it. Radars measure the position of objects in both range and angle (cross-range). While the angular resolution of missile defense radars is typically far too poor to separate objects in the cross-range directions unless they are 100s of meters or even many kilometers apart, their range resolution can be a fraction of a meter. The range resolution of a radar is largely determined by its bandwidth, the extent of frequencies over which a radar can operate in a single measurement. The theoretical minimum range resolution a radar can achieve is given by: ∆R = c/(2β), where c is the speed of light β is the bandwidth (in Hz). This can be rewritten as: ∆R = (0.15 m)/βG, where βG is the bandwidth in GHz (1×109 Hz). For a phased-array radar (as all modern U.S. missile defense radars are), it is difficult to implement a bandwidth much greater than about 10% of the radar’s operating frequency. For example, the current generation of U.S. X-band radars operate at a center frequency of about 10 GHz and reportedly have a bandwidth of 1 GHz.[2] According to the above formula, this bandwidth would then give a minimum range resolution of ∆R = 0.15 m = 15 cm. In practice, the actual minimum resolution is often somewhat greater: the U.S. X-band missile defense radars reportedly have a range resolution of about 25 cm.[3] Radars that can operate with large bandwidths (several hundreds of MHz or more) are referred to as wideband radars. Provide that the target they are observing has some rotational motion with respect to the radar, wideband radars can also use Doppler processing to obtain a small resolution in one cross-range direction, enabling the production of two-dimensional radar images, as shown in Figure 1 above, that are potentially useful for discrimination. However, the Upgraded Early Warning Radars at the core the U.S. GMD system, which operate at a frequency of about 0.44 GHz, have maximum bandwidths of about 10 MHz (0.001 to 0.01 GHz), corresponding to a range resolution of about 15 m.[4] Thus these radars are completely unable to use length measurements to distinguish a warhead from a piece of debris or a rocket booster stage, much less from an intentional decoy. This point is clearly made by figure 2 below, taken from a Lincoln Laboratory briefing. It shows that a radar with the bandwidth of the X-Band radars (1 GHz = 103 MHz) EWRs can easily distinguish between a warhead and a booster stage or a piece of debris by measuring their lengths (assuming there is adequate signal-to-noise to do so). On the other hand, the Upgraded Early Warning Radars (bandwidth = 10 MHz = 101 MHz) have no capability to so at all.



полная версия страницы