Форум » Дискуссии » А-135 ,SBX,MMW,Haystack,Pave Paws ... » Ответить

А-135 ,SBX,MMW,Haystack,Pave Paws ...

milstar: А-135 – единственная в мире боедежурящая система противоракетной обороны http://vko.ru/DesktopModules/Articles/ArticlesView.aspx?tabID=320&ItemID=434&mid=3087&wversion=Staging In 2003, I received a declassified Strategic Air Command document that showed how the United States reacted when the Soviet Union built a limited missile defense system back in the late 1960s. The response was overwhelming: A nuclear strike plan that included more than 100 ICBMs plus an unknown number of SLBMs to overwhelm and destroy the Soviet interceptors and radars. Based on the declassified information, two colleagues and I estimated in an article in the Bulletin of the Atomic Scientists that the total strike plan involved approximately 130 nuclear warheads with a total combined yield of some 115 megatons. Here is how the SAC historian described the plan: http://www.fas.org/blog/ssp/2007/07/targeting_missile_defense_syst.php “To ensure the penetration of the ICBM force, the Soviet ABM system would be attacked first. Minuteman E and F and Polaris missiles would first hit the Hen House early warning radars, and their Tallin system defenses [SA-5 SAM, ed.]. Then the Dog House radar and the Triad system around Moscow would be attacked. More than 100 Minuteman would be involved in the ABM suppression.” Source: U.S. Strategic Air Command, History of U.S. Strategic Air Command January-June 1968, February 1969, p. 300. Excerpts (pp. 300-306) available here (pdf, 0.8 MB). The Soviet ABM system back then consisted of about fifteen facilities, including eight launch sites around Moscow with a total of 64 nuclear-tipped interceptors, half a dozen SA-5 launch complexes (later found not to have much ABM capability) near Leningrad (now St. Petersburg), and at least three large early warning radars. Each of these surface facilities were highly vulnerable to the blast effect from a single nuclear warhead, so the large number of ICBMs was mainly needed to “suppress” (overwhelm) the interceptors. In the late 1980s, the Soviets upgraded they system by moving 32 remaining interceptors at four sites into underground silos (see Figure 2) and adding 68 shorter-range nuclear-tipped interceptors at five new sites closer to Moscow. This hardened and dispersed the interceptors, requiring U.S. planners to upgrade their strike plan, which #################################################################### probably ballooned to more than 200 warheads (although with less total yield due to more accurate missiles with ##################################################################### less powerful warheads).

Ответов - 66, стр: 1 2 3 4 All

milstar: All of this happened during the Cold War and many things have changed, but the basic motivation for targeting a limited missile defense system then was the same as today: The Soviet ABM system was entirely defensive and couldn’t threaten anyone (to paraphrase a characterization frequently use by U.S. and NATO officials to justify their missile defense plans today), but it could disturb the main ICBM attack on Moscow and military facilities downrange. That made it a top-priority target. And even though U.S. planners suspected that the system was not very efficient, ######################################################################### they committed about 10 percent of the entire ICBM force to destroy it. ######################################################## To the extent the Russia ABM is operational, U.S. nuclear strike plans probably still target it today. http://www.fas.org/blog/ssp/2007/07/targeting_missile_defense_syst.php

milstar: 1.Diapazon A-135 .Dlja schirokoj publiki sekret . W USA dawno izwestno - RLS mnogokratno wkljuchali Predpolozitelno X-band 2. Esli eto X-Band 8 ghz ,to eto nepolnaja PFAR isxodja iz raspolozenie h/2 /dlja polnoj X band 8 ghz na 1 kw.metr neobxodimo 2750 elementow , D antenni 18 metrow ,Ploschad odnoj antenni celi sootw 250 kw .metrow 4 antenn 1000 kw .metrow .Dolzno bit okolo 3 mln ) Количество управляемых вибраторов составляет более 250000. Диапазон работы станции - сантиметровый. В РЛС реализована полностью цифровая обработка сигналов (ЦОС). Инициатором и организатором работ по внедрению ЦОС в РЛС ПРО “Дон-2Н” являлся ее главный конструктор. Объем аппаратурного комплекса разработанной РЛС - более тысячи единиц шкафной аппаратуры, сотни тысяч излучателей ФАР и множество другой аппаратуры - определялся высокими требованиями по энергетическим характеристикам, зоне действия, многофункциональному применению и необходимостью использования крупноапертурных ФАР. [BR]http://www.rti-mints.ru/pro.htm T.e. bokowie lepestki xuze ,a podawlenie bokowix lepestkow kak w S-300v ( 3 nebolschix antenni wnizu naprotiv PFAR) na foto ne widno 3. Инициатором и организатором работ по внедрению ЦОС в РЛС ПРО “Дон-2Н” являлся ее главный конструктор. Sloka Strech processing ... s 10 bitnimi sowetskimi AZP (bili takie ) Strech processing - Verojatno tak ze kak i w USA Linkoln laboratory MMW radare 1990 goda -10 bit AZP na 20 mgz s polosoj signala 5 mgz Ochen prilichno / krome wixoda godnix Sowetskix 10 bit AZP/ ############ 4. 80 megawatt impulsnoj - nejasno skolko srednej . Irbis -E 5kwt sredenj/20 kwt impulsnoj 0.9 metra diametrom 0.01 kw.metra EPR na 90 km , 2.5-3 kw.metra EPR na 350 km Predpolozitelno Radar Duty 5-10% (Warlock 94 ghz NRL -10 %) T.e Don-2N vozmozno 5 megawatt srednej (esli werno soobschenie polkownika Xodarenka o 80 megawatt impulsnoj) Dlya sprawki Yachik 2.4 metra *2.4 metra *3.6 metra = 200 kwt sredenej X Band Haystack radar Dlya stazionarnoj konstrukzii realizuemo i 1000 yaschikow (200 megawatt srednej )

milstar: Сква́жность (в физике, электронике) — один из классификационных признаков импульсных систем, определяющий отношение периода следования (повторения)импульса к его длительности. Величина, обратная скважности и часто используемая в англоязычной литературе, называется коэффициентом заполнения (англ. Duty cycle). Таким образом, для импульсного сигнала справедливы следующие соотношения: , где S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса http://ru.wikipedia.org/wiki/%D1%EA%E2%E0%E6%ED%EE%F1%F2%FC


milstar: В одном из совместных с США экспериментов по возможности отслеживания малоразмерных космических объектов (так называемого “космического мусора”) МРЛС “Дон-2Н” успешно сопровождала специально запущенные шары диаметром 5 и 10 см на дальностях 1500 - 2000 км. Pri yglax elevazii 30 ° i bolsche ? Pri yglax elevazii 0.4 ° dalnost padaet w neskolko raz http://www.rti-mints.ru/pro.htm

milstar: http://www.boeing.com/defense-space/space/gmd/gallery/photos1.html Country: USA Basing: Sea In Service: Exp. 2005 Details The Sea-Based X-Band Radar (SBX) consists of an advanced radar system mounted on a floating platform. Once operational, it will be able to track, discriminate, and assess long-range ballistic missiles as part of the Missile Defense Agency’s Ground-Based Midcourse Defense (GMD) system. It will be located just off the coast of Alaska and will be linked to 10 ground-based interceptor missiles deployed at Fort Greely in Alaska and Vandenberg Air Force Base in California. SBX, in many ways, is the offspring of the Ground Based Radar-Prototype (GBR-P), which has served as the fire control radar for flight and intercept tests at the Reagan Test Site since 1999. On August 1, 2002, MDA awarded a $31 million contract to Boeing to oversee development of its new sea-based radar system. At present, Boeing is building the floating platform, Raytheon is developing the X-band radar, and the Harris Corporation is providing systems engineering, integration services, and satellite communications equipment. The SBX team has applied many of the lessons learned from the GBR-P program, resulting in significant risk reduction and cost efficiency. The entire project will cost approximately $900 million. MDA had initially planned to build a ground-based X-band radar, but decided to go with the greater range and mobility of a sea-based system. SBX’s floating platform, a modified oil-drilling vessel, is being designed for exceptional stability in high winds and storms. Measuring 240 feet wide and 390 feet long, the vessel will include a power plant, bridge and control rooms, living quarters, storage areas, and enough floor space and infrastructure to support the X-band radar. The platform’s mobility will allow MDA to relocate SBX to accommodate future “layers” of the Ballistic Missile Defense System. The X-band radar itself, which will sit on top of the floating platform, will be the largest, most sophisticated phased array, electro-mechanically steered X-band radar in the world. It will consist of thousands of antennae driven by transmit/receive (T/R) modules. T/R modules are multi-functional circuits that can transmit, receive, and amplify signals. In the X-band radar, they will provide the full fire control sensor functions for the Ground-Based Midcourse Defense system, including search, acquisition, tracking, discrimination, and kill assessment. The radar will be capable of distinguishing between objects as close as 15 centimeters. After the radar has been mounted on the vessel, the entire structure will measure over 280 feet from the keel to the top of the radar’s dome, displacing 50,000 tons of water. To put this in perspective, SBX will be roughly the size of two football fields. A commercial C-band satellite will establish communications between the platform and shore facilities. It will take between 50 and 55 people on the platform and an addition 30 to 40 on shore to maintain the system. Once operational, SBX will use its finely focused beam to track an incoming ballistic missile through space during the 20 or so minutes that it is outside the Earth’s atmosphere. The radar will transmit detailed tracking information to GMD’s command unit, which will calculate a fire mission and launch its Ground-Based Interceptor (GBI) missile. As the GBI streaks towards the threat, SBX will distinguish between warheads and decoys, ensuring the interceptor’s accuracy. The radar will continue to relay updated targeting information after GBI launches its Exoatmospheric Kill Vehicle (EKV), which will proceed on a collision-course trajectory toward the target. SBX will determine whether or not the EKV destroyed the warhead, and prepare to support a second launch if necessary. The one drawback of SBX is that X-band radars, like all other radars, cannot see over the curvature of the earth, known as the “radar horizon.” SBX’s ability to detect incoming missiles (and discriminate between warheads and decoys) depends completely on where the radar is located in relation to the incoming missile. Thus, the closer to rouge nations and terrorist-sponsoring states that SBX is positioned, the better the odds that GMD will be able to complete a successful interception. On August 16, 2003, MDA announced its decision to deploy the SBX platform just off the coast of Adak, Alaska. Located on the western end of the Aleutian Islands, Adak is ideal for SBX because it will allow the system extra time to collect data on incoming threats from Asia. MDA considered sites in Washington and California as well, but concluded that locations on the continental U.S. would not give GMD enough time to intercept its targets. Adak served as a base of operations during World War II, housing 6,000 naval personnel and their families. Its existing Army infrastructure includes a 7,900-foot runway, a deep-water port that is ice-free year-round, two piers, a 22 million-gallon fuel storage tank, and barracks. The X-band radar is currently being constructed in Brownsville, Texas. Once completed, it will be installed on the oil-drilling platform, which is being built in Norway. Sea trials will take place in the Gulf of Mexico before SBX moves to its primary base in Adak, Alaska. MDA plans for the SBX platform and radar to be fully integrated and deployed by December 2005. [BR]http://missilethreat.com/missiledefensesystems/id.58/system_detail.asp Eto nepolnaja AFAR X-BAnd s koef. zapolnenija primerno 10 % 68 000 GaAS MMIC Moschnost mozet bit 1 megawatt srednej . Nize 16 watt GaN sertifizirowannij dlja woennogo ispolzowanija ( est 101 watt Fujitsu 8 ghz GaN ,no neyasno s sertifikaziej dlja DoD) http://www.triquint.com/prodserv/more_info/proddisp.aspx?prod_id=TGA2517

milstar: Odnim iz wozmoznix variantow razwitija A-135 - Mnogodiapazonnie RLS k primeru X i 35 ghz W 35 ghz mozno realizowat polosu signala 3500 mgz -eto razreschajuschaja sposbnost 71 mm bez extrapoljazii polosi ( chitat nomera na maschinax 10 mm) Mozno otlichit loznie celi ot istinnix Antenni -cassegranowskie -kak Lincoln MMW radar ( Dopolnit A-135 16 cassegr antennami po 200 kwt srednej i dimatrom 13.5-18 metrow) ili PFAR (ferriti na 35 ghz est ,no polosa signala mozet bit 1000 mgz) W SSSR bili sereznie dostizenieja w oblasti RLS 35 ghz Moschnsot RLS Ruza 1 megawatt impulsnoj ,ploschad 40 kw.metrow ( ili equivalnet D= 7.2 metra) [BR]http://www.radiofizika.ru/services/radiolocation/mmdv-ruza/ РЛС «Руза» первая мощная станция миллиметрового диапазона волн с фазированной антенной решеткой, разработана на предприятии совместно с кооперацией в 1989 году, для отработки радиотехнических средств и совершенствования систем ракетно-космической обороны. РЛС работает в диапазоне 35 ГГц и построена по пассивной схеме на передачу и активной – на прием. Антенна содержит 120 крупногабаритных излучателей с ферритовыми фазовращателями. Площадь апертуры составляет около 40 м2. Двухканальный передатчик РЛС работает на гироклистронах. ФАР имеет малый сектор электронного сканирования луча, обеспечивающий быстрый поиск в секторе около 1-го кв.градуса. Фазированная антенная решетка установлена на поворотном устройстве, обеспечивающем перемещение луча по всей верхней полусфере. Дальность действия до 2000 км. Станция обеспечивает возможности наблюдения объектов в условиях повышенной ионизации атмосферы. Экспериментально полученные точности составляют: разрешающая способность по угловым координатам – 4,5 угл.мин., точность измерения угловых координат объектов наблюдения – 12 угл.сек. http://www.radiofizika.ru/services/radiolocation/mmdv-28h6/ РЛС с широким сектором электронного сканирования разработана на основе модулей пассивной ФАР с плотным расположением элементов в апертуре. Она выполнена по отражательной схеме на основе ферритовых фазовращателей, содержит около 3600 фазовращателей, расположенных в углах гексагональной сетки с шагом 1,1λ. Сектор электронного сканирования луча составляет ±25°. Излучатели в виде диэлектрических стержней формируют секторную. ДН.

milstar: http://www.redstar.ru/2011/04/29_04/1_04.html бывший начальник Главного штаба РВСН генерал-полковник Виктор Есин. по его словам, входят порядка 700 ядерных боевых частей для ракет-перехватчиков системы противоракетной обороны А-35, развёрнутой вокруг Москвы, а также для зенитных ракетных систем С-300 и С-400. http://www.vniitf.ru/index.php?option=com_content&view=article&id=109%3A2009-04-23-05-15-23&catid=44%3A2009-04-02-03-52-23&Itemid=258&lang=ru Боевая часть зенитной ракеты разработана в двух вариантах - с неядерным и с ядерным зарядами. Ядерный вариант предназначен для борьбы с групповыми воздушными целями. Nikakix sokraschenij -neobxodimo ywleichit chislo takticheskix Yabch

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Wideband Observables The distinguishing characteristic of a wideband radar is its fine range resolution, which is inversely proportional to the operating bandwidth. Such a radar system has a range resolution that is a fraction of the linear dimensions of its intended targets. These radars generally operate at high frequencies, where widebandwidth waveforms are easier to implement. With range resolution fine enough to encompass a target in a significant number of resolution cells, it becomes possible to distinguish individual scattering centers, which occur at regions of physical discontinuity. A ballistic missile warhead, for example, exhibits radar reflections from the nose, body joints, and base, as well as other points of discontinuity such as antenna ports. To observe radar reflections from smaller discontinuities, the radar must be able to operate at short wavelengths, since discontinuities much smaller than a wavelength will in general produce low-intensity reflected signals from the target. In addition, a short wavelength is desirable for observing curved surfaces, because when the wavelength is short compared to the radius of curvature, the radar reflection is dominated by specular reflection, thus allowing a finer determination of the size and shape of corresponding surfaces. For an object that reenters the atmosphere and generates an ionized wake, fine range resolution allows examination of the wake in thin slices, which results in the separation of reflections from different atmospheric phenomena around the hard body, such as the plasma layer at the nose or leading surface, the plasma sheath around the body, the boundary layers, the shock fronts, and the development of turbulent regions at the rear of the body. Such observations are of great value in deriving information about a target’s physical parameters, structural and heat-shield materials, and the function of reentering objects, all of which aid the discrimination process of distinguishing warheads from decoys. In the above scenario, the radar produces a one-dimensional range profile of the target. However, if the target is rotating about an axis that has a component perpendicular to the radar line of sight, such that some scattering centers are moving toward the radar with respect to others that are moving away from it, we can construct a one-dimensional cross-range profile for each range cell through Doppler processing of the radar returns. The range and cross-range profiles can then be combined to produce a two-dimensional range-Doppler image of the complete body. We can analyze this image to yield body size, body shape, the position and nature of scattering centers, the presence of internal reflections, the rotation rates, and the rotation axes for the object. In addition, these images can provide valuable information on the nature of the materials used in constructing the body, and information about antennas, apertures, and interior structures of such an object. Three-dimensional images can be generated from the two-dimensional images by using a technique called extended coherent processing. With this technique a series of range-Doppler images are collected over a time period when the target presents different look angles to the radar. The series of range-Doppler images is then coherently processed and referenced to a particular look angle. The resulting three-dimensional images produce even greater detail of target features than the two-dimensional range-Doppler images. The image of the damaged Skylab orbiting laboratory shown in Figure 1 is an example of this kind of processing. More recent advances in signal processing hardware and computational speed have led to the generation and measurement of wideband observables in real time. These observables, which can be used for real-time BMD discrimination, include determination of body length, feature identification, and radar images. Doppler processing and coherent phase-derived range techniques permit real-time indications of FIGURE 1. Simulated radar image (actual radar images of satellites remain classified) of the NASA Skylab orbiting laboratory, with a damaged solar panel on one side and a partially deployed solar panel on the other macro- and micro-dynamic body motion, which may offer clues to mass and mass distribution. Advances in wideband phased-array radar design now make it possible to exploit wideband observables on multiple objects in a missile complex.

milstar: ALCOR, shown in Figure 2, was the first highpower, long-range, wideband field radar system http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf Figure 2(b) shows the forty-foot ALCOR antenna and its pedestal inside the radome. ALCOR operates at C-band (5672 MHz) with a signal bandwidth of 512 MHz that yields a range resolution of 0.5 m. (The ALCOR signal was heavily weighted to produce low range sidelobes with the concurrent broadening of the resolution.) Its widebandwidth waveform is a 10-„}sec pulse linearly swept over the 512-MHz frequency range. High signal-tonoise ratio of 23 dB per pulse on a one-square-meter target at a range of a thousand kilometers is achieved with a high-power transmitter (3 MW peak and 6 kW average) and a forty-foot-diameter antenna. Cross-range resolution comparable to range resolution is achievable with Doppler processing for targets rotating at least 3Ѓ‹ in the observation time. The pulserepetition frequency of this waveform is two hundred pulses per second. ################ Processing 500-MHz-bandwidth signals in some conventional pulse-compression scheme was not feasible with the technology available at the time of ALCORЃfs inception. Consequently, it was necessary to greatly reduce signal bandwidth while preserving range resolution. This is accomplished in a timebandwidth exchange technique (originated at the Airborne Instrument Laboratory, in Mineola, New York) called stretch processing [4], which retains range resolution but restricts range coverage to a narrow thirtymeter window. In order to acquire and track targets and designate desired targets to the thirty-meter wideband window, ALCOR has a narrowband waveform with a duration of 10.2 ѓКsec and bandwidth of 6 MHz. This narrowband waveform has a much larger 2.5-km range data window. The ALCOR beamwidth is 5.2 milliradians, or 0.3Ѓ‹. This beamwidth, together with a high-performance antenna mount, enables ALCOR to produce

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf The Haystack Long-Range Imaging Radar After the facility was completed in 1978, operations were supported by the U.S. Air Force. The Haystack system has a number of features that rendered this option extremely attractive. It has a large diameter (120 ft) antenna needed to achieve deep-space ranges. The antenna was designed with Cassegrainian optics and could accommodate plug-in radio-frequency (RF) boxes at the vertex of the paraboloidal dish. These boxes supported various communications, radio astronomy, and radar functions. The interchangeable boxes are 8 Ѓ~ 8 Ѓ~ 12 ft, which is large enough for the high-power (400 kW peak and 200 kW average) new transmitter and associated microwave plumbing, feedhorns, and low-noise receivers needed for the long-range imaging radar.1 The Haystack antenna surface tolerance allows efficient operation up to 50 GHz, thus readily supporting operating at X-band (10 GHz) with a bandwidth of 1024 MHz, and a resulting range resolution of 0.25 m. A system for interchanging ground-based electronics and power sources supporting the various RF boxes was already in place. Using an established facility with existing antenna and prime power sources greatly reduced the cost of the new system, known as the Long Range Imaging Radar, or LRIR [6]. The LRIR, which was completed in 1978, is capable of detecting, tracking, and imaging satellites out to synchronous-orbit altitudes, approximately 40,000 km. The range resolution of 0.25 m is matched by a cross-range resolution of 0.25 m for targets that rotate at least 3.44Ѓ‹ during the Doppler-processing interval. The wideband waveform is 256 ѓКsec long and the bandwidth of 1024 MHz is generated by linear frequency modulation. The pulse-repetition frequency is 1200 pulses per second. The LRIR employs a time-bandwidth exchange process similar to that of ALCOR to reduce signal bandwidth from 1024 MHz to a maximum of 4 MHz, corresponding to a range window of 120 m, while preserving the range resolution of 0.25 m. To place a target in the wideband window, we first acquire the target with a continuous-wave acquisition pulse that is variable in length from 256 μsec (for short-range targets) to 50 msec (for long-range targets). An acquired target is then placed in active tracking by using 10-MHzbandwidth chirped pulses, again of variable length, from 256 μsec to 50 msec. The wideband window is then designated to the target. Antenna beamwidth is 0.05°. Figure 3(a) shows an artist’s rendition of the 120-foot Haystack antenna in its 150-foot radome; Figure 3(b) shows a photograph of the LRIR feed horn and transmitter/receiver RF box in the Haystack radome.

milstar: The transmitter and microwave subsystems also presented design challenges. To achieve maximum sensitivity the transmitter used four traveling-wave tubes (TWT) operating in parallel. Each TWT highpower amplifier developed by Varian for LRIR generates 100 kW peak and 50 kW average X-band power. Combining and balancing the TWT outputs through the myriad of required microwave components while controlling phase errors was a major challenge. The front-end receiver amplifiers developed by Airborne Instrument Laboratory are cryogenically cooled parametric amplifiers, or paramps. These efficient paramps are major contributors to Haystack’s high radar sensitivity, achieving a system noise temperature of 35 K. Although not a directly related part of the research and development of LRIR, the Haystack antenna and its protective radome are impressive engineering accomplishments. The Haystack 150-ft-diameter radome, at the time it was built in the early 1960s, was the largest rigid radome in the world. It was designed by the ESSCO Company of Concord, Massachusetts, to survive 130-mph winds.

milstar: Haystack modifizirowan w 2010 Novaja diametrom 37.5 metra titanovaja antenna ,wesom wsego 50 tonn Diapazon 92-100 ghz .s Extrapoljaziej polosi razr. sposobnost verojatno 10 mm (mozno chitat nomera awtomaschini ,esli pomestit ee na GEO orbitu -okolo 40 000 km ydalenie) http://www.haystack.mit.edu/obs/mhr/index.html

milstar: http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf The Millimeter Wave Radar The Millimeter Wave Radar, or MMW, was built at Kwajalein by Lincoln Laboratory (with significant contributions by the University of Massachusetts, RCA, and Raytheon) to extend the general imaging and tracking capabilities of ALCOR and to develop millimeter-wavelength signatures of ballistic missile components. The MMW, shown in Figure 5, became operational at Ka-band (35 GHz) in 1983, and Wband (95.48 GHz) in 1985, sharing a paraboloidal antenna with a diameter of forty-five feet. Both systems initially featured wideband waveforms of 1000- MHz spread generated by linear FM, and achieved 0.28-m range resolution. The transmitted pulse width is 50 ¦Мsec at a maximum pulse-repetition rate of 2000 pulses per second. The initial peak power at Ka-band was 60 kW and at W-band was 1.6 kW. A major thrust in the evolution of the MMW radar has been to demonstrate the feasibility of candidate real-time discrimination algorithms required for fire control and guidance of hit-to-kill BMD interceptors. To this end, the radar was designed with a rigid mount and narrow beam to provide precise angle metric accuracy (ЎЬ50 ¦Мradians). Several contractors assisted the Laboratory in the development of the MMW radar, among them researchers at the University of Massachusetts, RCA (now Lockheed Martin), and Raytheon. The combination of metric accuracy, wide bandwidth, and high Doppler-resolution capabilities makes MMW an excellent sensor for a real-time discrimination test bed. It provides extremely accurate estimates of motion differences caused by mass imbalances on real and threat-like targets and other feature-identification processing. Such a real-time test bed, called the Kwajalein Discrimination System, was implemented and exercised at MMW from 1988 through 1992. This system has demonstrated the feasibility of numerous real-time wideband discrimination algorithms. Following this successful demonstration, many of these processing algorithms have been subsequently implemented permanently into the MMW real-time system. Beginning in the late 1980s, a significant effort was carried out to further enhance the capabilities of the MMW radar. Advances in computer technology reached the point where real-time pulse compression at high pulse-repetition frequencies was possible. This capability results in improved sensitivity realized from real-time coherent and noncoherent pulse integration at 35 GHz. In 1989 researchers implemented a digital pulse-compression system that compresses every pulse in real time and subsequently improves coherent processing at higher tracking rates. A state-of-theart beam-waveguide antenna feed replaced the more lossy conventional microwave-waveguide plumbing. A second 35-GHz tube was also added, which doubled the average transmitted power. These modifications increased the signal pulse detection range on a one-square-meter target to over two thousand kilometers. System bandwidth was also increased to 2 GHz, resulting in a range resolution of about 0.10 m.

milstar: Rossijskie lampi /Denisova / na 35/94 ghz -mirowogo klassa .Stoimost menee 100 000 $ za 1 stuku [BR]http://www.gycom.ru/products/pr3.html Создана серия гироклистронов – мощных усилителей диапазона миллиметровых волн для радарных систем дальнего обнаружения. Ведутся разработки широкополосных СВЧ источников для использования в системах связи и технологических установках. Частота 34 / 93 ГГц Выходная мощность 250 / 340 кВт КПД 32 / 24 % Полоса (-3 дБ) 180 / 360 МГц Усиление 34 / 23 дБ Длительность импульса 100 мкс Частота повторения 100 / 5 Гц ############# Гиро-ЛБВ 180 kwt s polosoj 1800 mgz i bolee na 35 ghz Закрытое акционерное общество Научно-производственное предприятие "ГИКОМ" (ЗАО НПП "ГИКОМ") было организована на базе Института прикладной физики Российской академии наук, находящегося в Нижнем Новгороде и ряда российских предприятий электронной промышленности. ЗАО НПП "ГИКОМ" управляется из офиса в Нижнем Новгороде, его предприятия находятся в Нижнем Новгороде и Москве. В ГИКОМ входят научные и производственные группы, занимающиеся исследованием, изготовлением и испытанием различных приборов СВЧ электроники и вспомогательного оборудования, а именно, генераторов и усилителей, включая источники рекордные по выходной мощности и КПД, сверхпроводящих соленоидов, линий передачи, аппаратуры для приема и обработки микроволновых сигналов, специализированных источников питания и пр. В ГИКОМе работают высококвалифицированные специалисты в различных областях радиофизики и электроники, в том числе более 10 докторов наук и около 40 кандидатов физико-математических и технических наук. Среди его сотрудников 8 лауреатов Государственной премии СССР, 3 человека удостоены этой премии дважды. Сотрудники ГИКОМ участвуют в подготовке специалистов, преподают в ВУЗах, руководят курсовыми и дипломными работами и готовят соискателей ученых степеней. Продукция ГИКОМа представляет собой уникальные изделия высоких технологий, основанные на собственных разработках. Как правило, эти изделия применяются в различных научных исследованиях или в разработках новых перспективных технологических процессов. http://www.gycom.ru/index.html

milstar: A major thrust in the evolution of the MMW radar has been to demonstrate the feasibility of candidate real-time discrimination algorithms required for fire control and guidance of hit-to-kill BMD interceptors. #################################### To this end, the radar was designed with a rigid mount and narrow beam to provide precise angle metric accuracy (ЎЬ50 ¦Мradians). 13.7 metra diametr cassegr antenna W sowetskom teste 1961 -15 metrow cassegr. antenni Massa D=37.5 metra iz titana =50 tonn 1.7 metra - primerno 7 tonn Wpolne mozno 100 stuk na territorii 1 mln kw.km(radius 565 km ot Moskwi) raspolozit W ljuboj moment wremeni 100 takix antenn -eto 100 sloznix ballisticheskix celej Ysilitel 200 kwt srednej w Vertex -2.4*2.24*3.6 metra Dalnost Irbis-E X band 0.9 metra 5kwt srednej/20 kwt impulsnoj dlja 0.01 kw.metra EPR 90 km(dlja 2.5 metra =350 km) (13.7/0.9)^2 * (200/5) = 231.7*40=9268^0.25 = primerno w 10 raz bolsche chem Irbis-E T.e. Dalnost podobnoj RLS pri yglax elevazii bolee 30 grad dlja EPR = 0.01 kw.metra budet primern w 10 raz dalsche ,chem y Irbis-E = 900 km (yawno wixodit za predeli graniz Rossii pri raspolozenii gde to w Kruge s radiusom 565 km ot Moskwi) 100 RLS = 100 sloznix ballisticheskix celej w odin moment wremeni ,na kazduju po 4 serii po 2 raketi tipa 53t6 s 100g K. perexwata dlja odnoj 53t6 = 0.5 ,dlja 4 serij po 2 53t6 sootw - 0.996

milstar: Decoys could be quite sophisticated and complex, but they all conformed to the basic requirement of being light in weight compared to the weight of a warhead. Thus the fundamental approach to warhead identification was to discriminate between warheads and penaids on the basis of motion, size, and shape differences caused by these weight constraints. In the early days these decoys were designed to mimic the dynamics and sensor signatures of warheads, and they would challenge a defense radar’s ability to discriminate between similar targets in reentry. A second approach to warhead discrimination involved traffic decoys, which consisted of a large number of smaller objects designed to overwhelm and confuse a BMD system. To defeat traffic decoys, the radar needed to dismiss a large number of less credible objects quickly. Wideband radar operation helped with both of these discrimination tasks [2]. http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf In particular, effective discrimination against strategic threats requires a means of dealing with potentially large numbers of small decoys and penaids at high altitudes well beyond the level where atmospheric deceleration becomes a discriminator between heavy and lightweight objects. This need was especially acute in the 1960s, when BMD emphasis was on wide-area defense of cities. It was recognized that discrimination radars with wide bandwidth and the corresponding fine range resolution would be able to measure the lengths of objects, and quickly identify and eliminate radar targets substantially smaller than warheads from consideration as threats. Furthermore, the high operating frequencies required for widebandwidth radars would be of added benefit over those available in Nike Zeus and TRADEX (both at L-band). Bandwidths that are 10% of the radar’s carrier frequency are reasonably straightforward to implement (e.g., 500 MHz at C-band or 1000 MHz at X-band). At the higher frequencies required for wide-bandwidth sensing, there is greater potential to characterize the radar target’s physical features, thus providing another level of capability for discovering attempts to disguise a target’s true nature. In addition, higher operating frequencies are less vulnerable than lower frequencies to the effects of nuclear blackout. #################################

milstar: http://vko.forum24.ru/?1-3-20-00000110-000-0-0-1302627193 Mobilnij variant toze wozmozen .Chassi schirinoj 6.8 metra wojdet antenna 5.4 metra (,na 35 ghz schirina lucha - 0.1 grad kak i y Don -2N s 18 metrow diametr w X band ) w radioprozrachnom kupole ,widerzit weter 200 km/ch ланировалось изготовить два опытных образца спецшасси, для которых в Японии закупили 24 гигантских колеса «Бриджстоун» 3180 х 1185-1295! Огромным получился и сам колесный транспортер: длина – 32 000 мм, ширина – 6800 мм, высота – 3450 мм. Дорожный просвет по кронштейнам подвески – 480 мм, колея – 5400 мм. Машина имела две двухместные кабины по правому и левому борту [BR]http://ruzhany.narod.ru/rvsn/uragan005.html Massa antenni iz titana diametrom 5.4 metra -2.0- 2.5 tonni (Haystack 37.5 metra -50 tonn) Проектные проработки полноприводного специального колесного транспортера МАЗ-7904 особо большой грузоподъемности начались в соответствии с приказом министра автомобильной промышленности СССР от 19 февраля 1980 года № 15. В январе 1984 года легендарное детище Шапошника - МАЗ-7904 (12 х 12) был на Байконуре собран, а в феврале начались его испытания, которыми руководил заместитель главного конструктора Владимир Захаров. Водители-испытатели Н. Аксиневич, А. Савин, Л. Гляцевич, М. Шалкевич, Н. Петрович успешно одолели на супергиганте 4101 километр казахстанской степи, развивая при этом скорость до 27 км/час.

milstar: poprawka BILO Massa D=37.5 metra iz titana =50 tonn 1.7 metra - primerno 7 tonn --------------------------------- 3 wipalo prawilno 13.7 metra - primerno 7 tonn ##########################

milstar: http://www.missilethreat.com/repository/doclib/19840400-OTA-directedenergy.pdf From apogee, the slowest point in their freefall trajectory, the RVs and empty bus gain speed as they fall back to earth. RVs are more resistant to damage from directed-energy weapons than boosters, and they might be accompanied by many decoys. When these objects enter the upper atmosphere at about 100 km altitude ################################ Prjamaja widimost' s yrownja zemli 100 km wisoti -1100 km . Figure 2.1 .–The Flight of a Hypothetical Future Soviet ICBM With the Booster Characteristics of the U.S. MX Peacekeeper, Drawn to Scale

milstar: Комплекс средств прорыва перспективной противоракетной обороны: для преодоления перспективной ПРО вероятного противника ракета РТ-2ПМ2 снабжается комплексом средств прорыва ПРО новой разработки, созданным с использованием элементов комплекса средств прорыва ПРО "Сура" (который, в свою очередь, был создан во время работ по теме "Универсал"), и состоящем из пассивных и активных ложных целей и средств искажения характеристик головной части. ЛЦ неотличимы от боевых блоков во всех диапазонах электромагнитного излучения (оптическом, лазерном, инфракрасном, радиолокационном), позволяют имитировать характеристики боевых блоков практически по всем селектирующим признакам на внеатмосферном, переходном и значительной части атмосферного участка нисходящей ветви траектории полета боевых блоков ракеты, являются стойкими к поражающим факторам ядерного взрыва и излучению сверхмощного лазера с ядерной накачкой и пр. Впервые спроектированы ЛЦ, способные противостоять РЛС со сверхразрешением. Средства искажения характеристик головной части состоят из радиопоглощающего (совмещенного с теплозащитным) покрытия ГЧ, генераторов активных радиопомех, аэрозолей-источников инфракрасного излучения и т.д. КСП ПРО призван значительно увеличить время, необходимое перспективной ПРО вероятного противника для детектирования ГЧ среди множества ложных целей и помех, таким образом, значительно уменьшая вероятность перехвата ГЧ. Massa i gabariti loznoj celi otlichni ot BB .Plotnost atmosferi ochen mala ,no skorost ochen wisoka i letet oni budut po raznomu Konechno mozno sdelat loznuju cel s toj ze massoj i gabaritami chto i BB ############################################### Oni budut letel odinakowo - no togda wigodnee wmesto loznoj celi postawit esche odin BB ############ [BR]http://rbase.new-factoria.ru/pub/topol_tomorrow/topol_tomorrow.shtml По ряду данных, масса КСП ПРО МБР "Тополь-М" превышает массу КСП ПРО американской МБР Peacekeeper. В перспективе, при оснащении ракеты маневрирующей головной частью (или разделяющейся головной частью с боевыми блоками индивидуального наведения), возможности ПРО вероятного противника по перехвату ГЧ будут, по утверждению российских специалистов, сведены практически к нулю. podobnogo sorta ytwerzdenija wiziwajut podozreniaj k wsemu wischeskazannomu ##################################################### w stat'e ######## Bila realizowana MARV Trident Mark 500 s yskorenijami do 200 g Sozdat Protivoraketu s takimi yskorenijami toze wozmozno . ######################################## Esli k perexwata odnoj protivoraketi budet realizowan 0.5 ,to dlja 8 (4 serii po 2) on stanowitsja 0.996 ################# Sozdat dlja 1000 yabch 8000 raket PRO dlja USA ne predstawljaet problemi Несмотря на это, новая БЧ и ББ значительно более устойчивы к ПФЯВ и действию оружия, основанного на новых физических принципах, ################################# podobnogo sorta ytwerzdenija wiziwajut podozrenija k wsemu wischeskazannomu ##################################################### w stat'e #######



полная версия страницы