Форум » Дискуссии » Dynamic range,sensivity,resolution ,noise ,eirp ,polosa signala... » Ответить

Dynamic range,sensivity,resolution ,noise ,eirp ,polosa signala...

milstar: 1.Receiver dynamic range --------------------------------- Stat`ja Watkins-Johnson /razr. i postawshik priemnikow spionaza wj8617 w 80-90 godi/ http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n1.pdf http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n2.pdf http://www.triquint.com/prodserv/tech_info/WJ_tech_publications.cfm Dinamicheksij diapazon radara AN/FPQ-6 programmi Appolo -bolee 120 db Antenna -8.8 metra D ,5.4-5.9 ghz ,4.8 kwt srednej,3 megawatt impulsnoj moschnosti , dalnost bolee 60 000 km ,pri raz. +-2 metra ,IF-30 mgz,polosa signala -1.6 mgz http://en.wikipedia.org/wiki/AN/FPQ-6 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680003409_1968003409.pdf ljubitelskij priemnik smotri revue pri polose 400 herz , i ydalenii nesuchej signala pomexi 2000 herz blok. dinamicheskij diapazon -140 db ,chustw -138 db=0.028 microvolta http://www.elecraft.com/ 2. http://www.sandia.gov/RADAR/imageryka.html kollekzija image ot 35 ghz synthetic apperture radar razr.sposobnost' 4 inches -10 sm,100 millimetr polosa signala 2500 mgz Contact: To send feedback or request information about the contents of Sandia National Laboratories' synthetic aperture radar website, please contact: Nikki L. Angus Synthetic Aperture Radar Website Owner Sandia National Laboratories Albuquerque, NM 87185-1330 (505) 844-7776 (Phone) (505) 845-5491 (Fax) nlangus@sandia.gov http://www.sandia.gov/RADAR/movies.html kollekzija video s SAR Ku band i raz sposb 300 mm 3. -dbm microvolt conversion http://wa8lmf.net/miscinfo/dBm-to-Microvolts.pdf 0 dbm =224 millivolt dlja 50 ohm -47 dbm = 1 millivolt = 1000 microvolt -107 dbm = 1 microvolt -127 dbm = 0.1 microvolt -147 dbm = 0.01 microvolt -167 dbm = 0.001 microvolt = 1 nanovolt pri komnatnoj temperature tepl. schumi -174 dbm/ herz

Ответов - 76, стр: 1 2 3 4 All

milstar: High-Dynamic-Range Receivers for Digital Beam Forming Radar Systems https://ieeexplore.ieee.org/document/4250284 In principle, a DBF system with N receivers should attain a signal-to-noise ratio (SNR) improvement of N over that of a single receiver system, assuming the noise is decorrelated in all the receiver channels. However, the total single and two-tone, spur-free dynamic range (SFDR) may not achieve the N-fold improvement if errors and distortion in the system are correlated. ################# The receiver had two down-conversion stages from the S-Band range input (2.7 GHz to 3.7 GHz) to 75 MHz for operation in the second Nyquist zone using a 14-bit ADC sampled at 100MHz. The instantaneous receiver bandwidth was about 15 MHz, set by an anti-aliasing filter placed at the ADC input. A survey of five mixer candidates was conducted by measuring their spur levels. Lowest (−127dBc)5×4 spurs were obtained for mixer SM5TH by M/A-COM. The ADC increases the system noise figure by design, depending on the gain configuration. The ADC affects the output SNR significantly. The maximum output signal is limited by the ADC saturation, which is well below the saturation (OTOI −10 dB) of the analog portion of the receiver.

milstar: ermination Insensitive FET MixerThe receiver also employs a MITEQ high IP3 termi-nation insensitive mixer (TIM). The high intercept pointis provided by a dual FET architecture that is surround-ed by 90 degree hybrid couplers. The coupler terminationshelp reduce the sensitivity of the mixer response to exter-nal termination impedances, improve input compressionof the mixer, and provide cancellation of the even-orderintermodulation products. The mixer has an input thirdorder intercept performance of +33 dBm and a conversionloss of 9 dB. https://www.highfrequencyelectronics.com/May08/HFE0508_Cannata.pdf

milstar: http://www.ee.fju.edu.tw/pages/032_faculty/sclin/lecture/Rada_System_Design/Chapter7.pdf


milstar: A NEW UHF HIGH DYNAMIC RANGE RECEIVERFOR THE ARECIBO OBSERVATORY https://etda.libraries.psu.edu/files/final_submissions/8369 In this paper, a new design of a low noise amplifier (LNA) is presented, which will extend the receiver’s sensitivity and exhibit a faster recovery time from interference caused by the radar’s transmitter pulse. In addition, a compact high temperature superconducting (HTS) bandpass filter is introduced to the receiver chain to replace the receiver’s current cavity resonator filter. This newly designed planar filter improves the rejection of undesired signals detected bythe 430 MHz receiver chain. In addition, the bandpass filter design utilizes distributed microstrip elements to be fabricated from an Yttrium Barium Copper Oxide (YBCO) thin film superconductor on a Magnesium Oxide (MgO) substrate. Figure 3-1: Balanced Amplifier Configuration.The configuration features a hybrid coupler that splits the input signal into two channels 90 degrees out of phase from each other. The couplers serve to terminate reflections created by each channels’ matching networks (labeled MN). Identical amplifiers (Amp A and B) boost the signal power. Finally, an additional coupler combines the signals and produces a single in-phase output.

milstar: https://www.almaobservatory.org/en/about-alma-at-first-glance/how-alma-works/technologies/receivers/ if processing 8 2-4 ghz bands

milstar: https://science.nrao.edu/science/meetings/2018/16th-synthesis-imaging-workshop/talks/McKinnon_Antennas.pdf

milstar: file:///root/Downloads/ALMAdevel2019_Huang.pdf n-house designed MMIC active mixer is replaced by commercial passive double-balanced MMIC mixer (model number: MM1-2567LS) by MarkiMicrowave. The conversion loss of the Markimixer is 7 to 9 dB.

milstar: https://www.researchgate.net/publication/311430571_The_Atacama_Large_Millimetersubmillimeter_Array_ALMA_Band-1_Receiver

milstar: http://www.rfcafe.com/references/articles/wj-tech-notes/high-dynamic-range-receiver-parameters-v7-2.pdf

milstar: https://www.highfrequencyelectronics.com/May08/HFE0508_Cannata.pdf

milstar: https://safe.nrao.edu/wiki/pub/NGVLA/NgVLAWorkshop/Murden_Analog_Device_Ultra_Wideband_.pdf

milstar: https://library.nrao.edu/public/pubs/obsstat/VLAOS_0792.pdf

milstar: https://my.fit.edu/~tcrandel/ece5115/receiver_design_tutorial.pdf Receiver Design– TutorialJames B. Offner (Author)Harris Corporation Government Communications Systems Division 2400 Palm Bay RdPalm Bay, Florida 32905 Abstract––Numerous interrelated trade-offs are undertaken for any receiver or receive chain design, which must be jointly optimized for the intended operational environment. Some of the requirements resulting from this environment are: noise figure (NF), input 3rd order intercept point (IP3), input 1dB compression point (P1dB), dynamic range, input desensitization level, non-damage input power, out-of-band (OOB) interference rejection, gain and output power. This paper focuses on these requirements and the subtleties associated with achieving them.

milstar: 1. Географические климатические условия Гибель Испанской армады потеря флота Хубилая при попытке высадки в Японию «Божественный ветер» будет бушевать двое суток, сметая всё на своём пути Жесткие требования мореходности ( 9000 т для консервативного проекта, нe с малой площади ватерлинии жесткие требования выбора диапазонов РЛС L 750-1250 mhz и X 7600-8400 mhz 2. РЛС диапазона L лучше в условиях плохой погоды для обнаружения малозаметных низколетящих крылатых ракет требует меньше компонентов для апертуры с полным заполнением, легче удовлетворить требования пo отводу тепла и компоненты более дешевы недостаток большая площадь апертуры,однако этот диапазон используется на фрегатах водоизмещением 4100 тонн AN/SPS-49 7.3 m × 4.3 m https://en.wikipedia.org/wiki/AN/SPS-49 в самолете СУ-57 ( площадь апертуры еще меньше ) 3. для сдвоенной апертуры (как в ФРЕГАТ-М2 ) Источник: http://bastion-karpenko.ru/fregat-m2em-rls/ ВТС «БАСТИОН» A.V.Karpenko с размерами 7.3 m × 4.3 m для АФАР с полным заполнением 1000 mhz h/2 =150 mm потребуется 2*49*30 э=2940 элементов 4. концепция повсеместного(ubiquitous ) радара Naval Research Laboratory https://apps.dtic.mil/dtic/tr/fulltext/u2/a403877.pdf имеет ряд преимуществ пo сравнению с классической АФАР 5. в случае использования супергетеродина с 2 преобразованиями частоты 490 mhz ,70 mhz как в Радаре Cobra Dane https://fas.org/spp/military/program/track/cobra_dane.htm может быть реализована на "отечественных" аналого-цифровых преобразователях https://mri-progress.ru/products/bis-i-sbis/spetsialnye-sbis/sbis-16-razryadnogo-atsp/ СБИС 16-разрядного АЦП конвейерного типа с частотой дискретизации 200 МГц изготовлена по КМОП 90-нм технологии и предназначена для аналого-цифрового преобразования диффе- ренциальных аналоговых сигналов. В микросхеме реализован алгоритм встроенной калибров- ки передаточной характеристики. Функциональный аналог ADS5485 фирмы Texas Instruments. https://mri-progress.ru/products/all-lists/K5111HB015.pdf ############################################################### 6. в случае использования AD9625 12 bit 2-2.6 GSPS SFDR 80dbc возможен отказ от супергетеродина и смесителей RF Sampling NLEQ добавит 10 db to 80 dbc https://www.analog.com/media/en/technical-documentation/tech-articles/Review-of-Wideband-RF-Receiver-Architecture-Options.pdf https://archive.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf https://dspace.mit.edu/bitstream/handle/1721.1/119717/1078637048-MIT.pdf?sequence=1&isAllowed=y ad9625 2-2.6 GSPS SFDR 80 dbc at 1000 mhz NLEQ добавит 10 db это уже приличный результат для радара с полностью цифровым формированием луча ############################################# 7. AD9625 price 642$ per 1 https://www.analog.com/en/products/ad9625.html#product-overview https://www.analog.com/media/en/technical-documentation/data-sheets/AD9625.pdf The AD9625 architecture includes two DDCs, each designed to extract a portion of the full digital spectrum captured by the ADC. Each tuner consists of an independent frequency synthesizer and quadrature mixer; a chain of low-pass filters for rate conversion follows these components. Assuming a sampling frequency of 2.500 GSPS, the frequency synthesizer (10-bit NCO) allows for 1024 discrete tuning frequencies, ranging from −1.2499 GHz to +1.2500 GHz, in steps of 2500/1024 = 2.44 MHz. The low-pass filters allow for two modes of decimation. A high bandwidth mode, 240 MHz wide (from −120 MHz to +120 MHz), sampled at 2.5 GHz/8 = 312.5 MHz for the I and Q branches separately. The 16-bit samples from the I and Q branches are transmitted through a dedicated JESD204B interface. A low bandwidth mode, 120 MHz wide (from −60 MHz to +60 MHz), sampled at 2.5 GHz/16 = 156.25 MHz for the I and Q branches separately. The 16-bit samples from the I and Q branches are transmitted through a dedicated JESD204B interface. 8. примеры различных РЛС диапазона L Su-57,Cobra Dane ,FPS-117, Gamma DE,AN/SPS-49,Protivnik ,smart-l mm http://ausairpower.net/APA-Rus-Low-Band-Radars.html#mozTocId829681 https://lockheedmartin.com/content/dam/lockheed-martin/rms/documents/ground-based-air-surveillance-radars/FPS-117-fact-sheet.pdf https://www.radartutorial.eu/19.kartei/01.oth/karte003.en.html https://www.thalesgroup.com/en/smart-l-mm

milstar: https://www.jhuapl.edu/Content/techdigest/pdf/V22-N03/22-03-Cole.pdf AM/FM Noise in the Target Illumination Signal for Semi-Active Missiles Low-frequency (approximately10 to 400 Hz) noise limits are established such that target energy spreading out of the fast Fourier transform (FFT) bin occupied by the target does not adversely affect the missile’s target coherency test. Mid-frequency (approximately ≥400 Hz to ≤5 kHz) noise should not allow clutter to mask a crossing or slow target. High-frequency (>5 kHz) noise should not permit maximum clutter or spillover from degrading target sensitivity. When specifying noise, a specification bandwidth is also required. An industry-standard term for quantifying phase noise, denoted by L(f), is defined as decibels rela-tive to the carrier per hertz of bandwidth. (The terms phase noise and FM noise are used interchangeably in this article.) The noise specifications discussed in this article are given in various bandwidths as a function of frequency offset from the carrier. At the lower fre-quencies, a bandwidth that is 10 times smaller than the mid- and high-frequency ranges is typically used. We have some specifications where the high-frequency bandwidth is 100 times larger than the low-frequency bandwidth. The use of different bandwidths for differ-ent areas of the Doppler spectrum is a trade-off between two factors: (1) the need to detect narrowband signals in white Gaussian noise, which requires narrowband fil-ters, and (2) the need to complete the measurement in a timely fashion, which requires a filter with a bandwidth that is at least 10 times wider than the low-frequency bandwith

milstar: Target Discrimination Target discrimination is a critical capability for the ASM seeker, especially in the presence of jamming and other EA (Electronic Attack). For this analysis, it is only indicated that the coherent seeker presents more information at, perhaps higher resolution, to the postprocessor for discrimination purposes https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.928.3912&rep=rep1&type=pdf



полная версия страницы