Форум » Дискуссии » Dynamic range,sensivity,resolution ,noise ,eirp ,polosa signala... » Ответить

Dynamic range,sensivity,resolution ,noise ,eirp ,polosa signala...

milstar: 1.Receiver dynamic range --------------------------------- Stat`ja Watkins-Johnson /razr. i postawshik priemnikow spionaza wj8617 w 80-90 godi/ http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n1.pdf http://www.triquint.com/prodserv/tech_info/docs/WJ_classics/vol14_n2.pdf http://www.triquint.com/prodserv/tech_info/WJ_tech_publications.cfm Dinamicheksij diapazon radara AN/FPQ-6 programmi Appolo -bolee 120 db Antenna -8.8 metra D ,5.4-5.9 ghz ,4.8 kwt srednej,3 megawatt impulsnoj moschnosti , dalnost bolee 60 000 km ,pri raz. +-2 metra ,IF-30 mgz,polosa signala -1.6 mgz http://en.wikipedia.org/wiki/AN/FPQ-6 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680003409_1968003409.pdf ljubitelskij priemnik smotri revue pri polose 400 herz , i ydalenii nesuchej signala pomexi 2000 herz blok. dinamicheskij diapazon -140 db ,chustw -138 db=0.028 microvolta http://www.elecraft.com/ 2. http://www.sandia.gov/RADAR/imageryka.html kollekzija image ot 35 ghz synthetic apperture radar razr.sposobnost' 4 inches -10 sm,100 millimetr polosa signala 2500 mgz Contact: To send feedback or request information about the contents of Sandia National Laboratories' synthetic aperture radar website, please contact: Nikki L. Angus Synthetic Aperture Radar Website Owner Sandia National Laboratories Albuquerque, NM 87185-1330 (505) 844-7776 (Phone) (505) 845-5491 (Fax) nlangus@sandia.gov http://www.sandia.gov/RADAR/movies.html kollekzija video s SAR Ku band i raz sposb 300 mm 3. -dbm microvolt conversion http://wa8lmf.net/miscinfo/dBm-to-Microvolts.pdf 0 dbm =224 millivolt dlja 50 ohm -47 dbm = 1 millivolt = 1000 microvolt -107 dbm = 1 microvolt -127 dbm = 0.1 microvolt -147 dbm = 0.01 microvolt -167 dbm = 0.001 microvolt = 1 nanovolt pri komnatnoj temperature tepl. schumi -174 dbm/ herz

Ответов - 76, стр: 1 2 3 4 All

milstar: http://www.ee.fju.edu.tw/pages/032_faculty/sclin/lecture/Rada_System_Design/Chapter7.pdf 7 - 28 Chapter 7: Radar Receiver Dr. Sheng-Chou Lin Radar System Design Pulse Compression • Allow a radar to use a long pulse to achieve high radiated energy and simultaneously to obtain range resolution • Use freq. or phase modulation to wider the signal bandwidth • Linear FM pulse compression • A stable but noncoherent LO • RF and IF processing circuitry must be broadband • IF amplifier must have sufficient bandwidth and linear phase over the band • Compressive filters used are surface acoustic wave (SAW) devices. analog device is used to obtained a compressed video output. 7 - 29 Chapter 7: Radar Receiver Dr. Sheng-Chou Lin Radar System Design Frequency Stepped Coherent Receiver High-range resolution • Wideband frequency stepped waveform • processing the received echo using FFT • Coherent or noncoherent detection • Coherent processing can increase the receiver SNR • STALO with a frequency synthesizer whose output frequency is selectable in N discrete steps of step size • Total bandwidth = • Wide bandwidth requirement for the receiver front end (circulator, protector, RF mixer • effectively generates a wideband signal while maintaining a narrowband receive

milstar: российский скоростной ацп конвейерного типа Resolution 14 Bit Sample rate 125 MSPS; Parallel CMOS and LVDS output; Single power supply 1.8V; SNR - 69.9dBFS; INL - 3.0 LSB; 180 nm CMOS process. http://www.milandr.com/ICDCS.php#/ https://www.milandr.ru/upload/smi/konveyernyy_atsp.pdf В статье представлен первый конвейерный аналого-цифровой преобра- зователь (АЦП) 5101н В025 в разрабатываемой линейке АЦП компании «миландр». Первый быстродействующий 14 - разряд - ный АЦП в линейке преобразователей ком - пании «Миландр» К5101НВ025, выполнен- ный по технологии 0,18 мкм, достигает со- отношения сигнал/шум 64 дБ и диапазона, свободного от гармоник, 75 дБ при частоте выборки 75 Мвыб./c.

milstar: Динамический диапазон радара AN/FPQ программы Аполлон более 120 дб Антенна 8.8 метра диаметром C band 5.4-5.9 Ghz 4.8 квт средней мощности,3 мегаватта импульсной мощности промежуточная частота-30 мегагерц, полоса сигнала -1.6 мегагерц Дальность более 60 000 километров при разрешении +- 2 метра http://en.wikipedia.org/wiki/AN/FPQ-6 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680003409_1968003409.pdf ########## 37 metr Dish Lincoln laboratory radar The three radar intermediate-frequency inputs to the A/D board are 20 MHz bandwidth centered at 10 MHz, and are thus sampled with a 40 MHz clock http://www.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_7_Eshbaugh.pdf FIGURE 16. Single-channel radar channel processing performed by DPCS for a typical stretch waveform. --- The SPS-48E radar (Fig. 1) uses a triple conversion receiver. The system is wideband until the second intermediate frequency (IF) conversion, where the individual beams are bandpass filtered and separated. Since three beams are used in the DMTI, there are three coherent oscillator frequencies (one for each beam) in the final conversion of the receiver (final IF is about 1.5 MHz). A single analog-to-digital (A/D) converter is used for each beam. In-phase and quadrature (I/Q) data are developed based on samples that are spaced at multiples of 90° at the IF frequency. The interpolation filter develops the I/Q estimates from A/D samples http://techdigest.jhuapl.edu/TD/td1803/roul.pdf The AN/SPS-48G is a long-range, three-dimensional (3D), air search radar that is progressively being installed on CVN, LHA, LHD and LPD classes of ships, replacing the AN/SPS-48E. The program of record is to backfit the existing AN/SPS-48E population with the AN/SPS-48G variant from 2011 through 2021, and to keep this system operational through the year 2050. As of the end of 2016, the AN/SPS-48G is already installed or in the process of installation aboard CVNs 68-72, CVNs 74-76, LHDs 1-3, LHD 7, LHA 7 and LPDs 26-27. The AN/SPS-48G is used to provide full volumetric detection data for the Ship Self Defense System (SSDS) via the Cooperative Engagement Capability (CEC) or the SYS-2 tracker; Air Intercept Control; Anti-Ship Cruise Missile detection including low elevation and high diver targets; backup aircraft marshalling; and the new Hazardous Weather Detection and Display Capability. http://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=1250&ct=2


milstar: http://www.wirelessinnovation.org/assets/Proceedings/2012Europe/2012-europe-a-4.1.3-ulbricht-presentation.pdf Analog-to-Digital Conversion – the Bottleneck

milstar: http://www.rfcafe.com/references/electrical/ew-radar-handbook/receiver-sensitivity-noise.htm

milstar: https://www.aticourses.com/sampler/Modern_Missile_Analysis.pdf

milstar: http://helitavia.com/skolnik/Skolnik_chapter_19.pdf Pulse Doppler (PD) Operation. 2 " 6 Semiactive systems using other than CW illumination have been employed. Some early systems employed noncoherent pulse waveforms, but they are not suitable for operation in clutter (except for very large target cross sections). Coherent ---- Active seekers, since they use a single antenna both to transmit and to re- ceive, cannot use CW because of the very limited isolation achievable. Noncoherent pulse or coherent PD waveforms have been employed, and either the central-line processing or the range-gated approach can be used for coherent operation

milstar: http://eadcgroup.com/data/documents/RadarSimplified_copy.pdf https://www.d-ta.com/company/

milstar: Imaging radars such as the Haystack Auxiliary radar (HAX), HUSIR, and the Millimeter-Wave radar (MMW) on Kwajalein Atoll, Marshall Islands, employ a linear frequency-modulated (LFM) waveform and stretch pro - cessing to allow low-rate sampling of the demodulated signal [1]. The stretch method mixes the received signal with a delayed copy of the transmitted signal, called the deramp waveform, to effectively perform a range-to-fre - quency conversion over a small swath (in time and dis - tance) containing the target. For example, HUSIR sweeps from 92 GHz to 100 GHz in pulse widths varying from 51.2 μ s to 819.2 μ s, providing a range swath of 7 m to 120 m, depending on waveform. https://www.ll.mit.edu//publications/journal/pdf/vol21_no1/21_1_7_Eshbaugh.pdf

milstar: Before discussing the STAP algorithm, it may help to provide some context. STAP is basically an adaptive filter, which can filter over the spatial and temporal (or time) domain. The goal of STAP is to take a hypothesis that there is a target at a given location and velocity, and create a filter that has high gain for that specific location and velocity, and apply proportional antenuation of all signals (clutter, jammers and any other unwanted returns). https://www.eetimes.com/document.asp?doc_id=1278878 In fact, this is a very conservative scenario. The PRF is rather low and the number of antenna array inputs is very small. Should the number of antenna array inputs increase by 12 to 48, the processing load of the matrix processing, in particular QR Decomposition, goes up by the third power or 64 times. This would require over 3 TeraFLOPs of realtime floating point processing power. Because of this, the limitations on STAP are clearly the processing capabilities of the radar system.

milstar: http://iaiest.com/dl/journals/8-%20IAJ%20of%20Innovative%20Research/v2-i9-sep2015/paper1.pdf

milstar: http://www.microwavejournal.com/articles/2046-integrated-radar-receiver-front-ends

milstar: http://www.microwavejournal.com/articles/2018-advances-in-receiver-front-end-and-processing-components

milstar: https://www.researchgate.net/publication/261267768_A_high-dynamic_range_SiGe_low-noise_amplifier_for_X-band_radar_applications

milstar: http://www.rfcafe.com/references/articles/wj-tech-notes/Rec_dyn_range1.pdf

milstar: http://www.r-390a.net/Receiver-Specifications-Explaned.pdf

milstar: . The S-Band Transponder had to be limited in size and weighed only eight pounds. Another major challenge occurred when determining how to get signals across millions—let alone billions—of miles without consuming massive amounts of power. The radio frequency subsystem can pick up a signal from Earth that is infinitesimal—just .0000000000000000001 of a watt. 10^-19 watt = -190 dbw = -160dbm https://gdmissionsystems.com/Articles/2017/08/31/news-voyager-exploring-the-unknown-for-40-years For 50 Ω System -190 dbw = -160dbm -107 dbm = 1 microvolt -127 dbm =0.1 microvolt -147 dbm = 0.01 microvolt -160 dbm = 0.00224 microvolt -167 dbm = 0.001 microvolt -174 dbm = 0.000447 microvolt/hz -galaktical noise

milstar: https://gdmissionsystems.com/products/satcom-technologies/satcom-electronics-products/low-noise-amplifiers/x-band-low-noise-amplifier https://gdmissionsystems.com/products/satcom-technologies/satcom-electronics-products/low-noise-amplifiers/ka-band-low-noise-amplifier https://gdmissionsystems.com/products/satcom-technologies/satcom-electronics-products/low-noise-amplifiers/c-band-low-noise-amplifier https://gdmissionsystems.com/products/satcom-technologies/satcom-electronics-products/low-noise-amplifiers/ka-band-low-noise-amplifier

milstar: https://www.phys.hawaii.edu/~anita/new/papers/militaryHandbook/rcvr_sen.pdf

milstar: Typical values for maximum sensitivity of receivers would be: RWR -65 dBm Pulse Radar -94 dBm CW Missile Seeker -138 dBm



полная версия страницы