Форум » Дискуссии » Operazionnie ysiliteli ,ZAP/AZP & (продолжение) » Ответить

Operazionnie ysiliteli ,ZAP/AZP & (продолжение)

milstar: 1941: First (vacuum tube) op-amp An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. ###################################################### It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. ######################################################################### This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that ####################################################################### would not have been possible otherwise.[3] ########################### http://en.wikipedia.org/wiki/Operational_amplifier

Ответов - 61, стр: 1 2 3 4 All

milstar: to: https://vk.com/concern_sozvezdie?ysclid=lpvg7ypc4203178344 office@sozvezdie.su to: https://vm.ric.mil.ru/Redkollegiya copy for information to .. re: в условиях массированной РЭБ с обеих сторон , массированного использования БПЛА необходимость в радиостанциях с 2 полностью независимыми каналами в диапазонах до 18+ГГц / AD9082 2x6 GSPS ADC + 4 DAC в одном корпусе Power Dissipation 10 wt в условиях массированной РЭБ с обеих сторон , массированного использования БПЛА с системами связи в диапазонax 0.9 ГГц-6 ГГц,Starlink 10.7-14.5 ГГц индивидуальные радиостанции с двумя независимыми каналами в диапазонах до 18+ ГГц при подключении внешней небольшой складной антенны с апертурой 30 сантиметров весом до 1 килограммa дадут возможность более гибкого использования 1. носимые вес 1.25 -1.65 kg compare Пистолет-пулемёт ФСО Вереск Вес — 1,65 кг. 2. переносные вес 5-6 kg 3. вариант базирования на автомашине Тигр иллюстративный пример 1 канал связи с бпла через спутник в диапазоне 20 /44 ГГц «Благовест» (изделие 14Ф149) — серия геостационарных российских спутников связи Спутники работают в в диапазонах C 3.4-4.2 ГГц на линии «вниз» и 5,975-6,475 ГГц на линии «вверх» Ка/Q 20 ГГц на линии "вниз" и 44 ГГц на линии "вверх" 2 канал сканирование диапазона 0.9-6 ГГц, 8-12 ГГц ,13-15 ГГц обнаружение БПЛА или Ракет противника при обнаружении БПЛА противника на дистанции 5 километров есть две минуты времени что-то предпринять ....так как выходная мощность индивидуальных радиостанций достигает 10 ватт при наличии внешней антенны на дистанциях 1 км+ возможно радиоподавление некоторых типов БПЛА AD9082 2x6 GSPS ADC + 4 DAC в одном корпусе 0.028 micron в России такой технологии нет ,есть 0.065 micron AD 9625 -2600 очень хороший ADC но для очень компактного монтажа нe совсем подходит AD9625-2600 в партиях пo 1000 цена 1081 usd с военной приемкой в два раза дороже https://www.analog.com/media/en/technical-documentation/data-sheets/AD9625.pdf он оптимизирован для работы второй зоне Найквиста 2600/2=1300-2600 mhz SFDR at 1800 mhz 77 dbc .Power dissipation 4watt Power Dissipation 10 wt ...компромисс ,все в одном корпусе ,паразитные наводки но преимущество в габаритах ...при выборе пo первой промежуточной еще необходим один смеситель на каждый канал приемника 2-18 GHz и усилитель мощности 10 wt https://www.qorvo.com/newsroom/news/2023/qorvo-unveils-the-worlds-smallest-2-18-ghz-10w-front-end-module Greensboro, NC, June 6, 2023 – Qorvo® (Nasdaq: QRVO), a leading global provider of connectivity and power solutions, today announced the world's first front end power module covering the 2-18 GHz frequency range. The QPF0219 is a 10W multi-chip Front End Module (FEM) that integrates a transmit/receive (T/R) switch, a limiter, a low-noise amplifier and a power amplifier, making it ideal for electronic warfare, multifunction wideband arrays, radar and communications applications удастся ли это разместить в корпусе индивидуальной радиостанции весом 1.25 кг 15.24 x 7.62 x 5.08 cm вес https://www.l3harris.com/sites/default/files/2023-05/cs-tcom-an-prc-163-multi-channel-handheld-radio-datasheet-r.pdf AD9082 The AD9082 with decimation set to 96×. Measured SNR is 72.8 dB and measured SFDR is 105 dB https://www.analog.com/media/en/technical-documentation/tech-articles/considering-gsps-adcs-in-rf-systems.pdf https://www.analog.com/media/en/technical-documentation/data-sheets/AD9082.pdf ----------------------------------- сканер с размерами 165mm x 103mm x 25mm ADC класса 100-200 msps The scan time from 100 kHz to 6 GHz in 20 MHz steps was well under 1second. https://www.armms.org/media/uploads/1304696513.pdf The original design brief was to achieve a receiver capable of scanning a band from 100 kHz to 6 GHz in less than 1 second. The additional requirements were: an instantaneous bandwidth of up to 20 MHz; a final IF suitable for feeding a digital receiver with around 100 Msps sample rate; a minimum signal sensitivity of -107 dBm and; a dynamic range of at least 80 dB. ------------------------------------------------------------------------------------------------------- Multichannel RF Tuner. Covering 1 MHz - 18 GHz in a CMOSS/SOSA-Aligned 3U VPX 169 mm x 100mm x 25 mm https://resources.epiqsolutions.com/hubfs/Sidekiq-VPX410-datasheet.pdf?hsLang=en ---------------------------------------------------------------- в вариантe базирования на автомашине Тигр https://fei-elcomtech.com/wp-content/uploads/2019/11/Product-Release-SIR-4000.pdf Ultra – Performance, Receiver up to 40 GHz SIR-4100 ELINT/MASINT Receiver: • Input Frequency 0.1 to 40 GHz • <100 usec in-band switching • 1.8 GHz IF Output with 1GHz BW • 160MHz & 70MHz IF with up to 80MHz BW • Graphical User Interface software -------------------- Figure 4. The AD9082 with decimation set to 96×. Measured SNR is 72.8 dB and measured SFDR is 105 dB. ----------------------- SNR is a more linear improvement, as the decimation filters reduce the amount of integrated noise for the receiver chain. With no decimation, the SNR is 56.4 dBFS; at 8× decimation, the SNR is 63.5 dBFS; and at 96× decimation, the SNR is 72.8 dBFS. As a point of comparison, best-in-class data converter performance for ~250 MSPS devices like the AD9467 and LTC2208 is an SNR of 75 dB and an SFDR of 100 dBc. This class of performance has long been required by the heterodyne signal chains in which ADCs like the AD9467 were commonly used. The AD9082 can achieve the same noise and dynamic range, while eliminating the heterodyne signal chain size, weight, power, and cost—and it is also able to scale to much higher instantaneous bandwidths as required! ----------------- How to Select the Best ADC for Radar Phased Array Applications - Part 2 Phased array radar ADCs also need high linearity (that is, IP3 > 22 dBm). When evaluating SNDR, know whether it includes interleave spurs, and make sure spectral regions aren’t cherry-picked. https://www.analog.com/en/technical-articles/select-the-best-adc-for-radar-phased-array-apps-part2.html ---------------- Preliminary Data Sheet Apollo MxFE Quad, 16-Bit, 28 GSPS RF DAC and Quad, 12-Bit, 20 GSPS RF ADC https://www.analog.com/media/en/technical-documentation/data-sheets/AD9084.pdf -------------------- Обзор нового "Азарта", Р-187-П-1 "Азарт" fev 2023 version scanner 2khz- 432 mhz https://ok.ru/video/6523008191104 https://voenhronika.ru/publ/vojna_na_ukraine/01_12_2023_poslednie_novosti_s_ukrainy_zelenskij_okonchatelno_otmenil_vse_vybory_v_strane_do_konca_vojny_karta_boevykh_dejstvij_21_video/60-1-0-14708 ------------------------------------------------- Новая радиостанция, разработанная специалистами НПЦ «Вигстар», обеспечивает скорость передачи информации по спутниковому каналу связи от 2 до 4 Мбит/с. Общий вес изделия, в зависимости от модификации, составляет от 5 до 10 кг, диаметр разборной антенны - 55 см, а развёртывание радиостанции занимает не более двух минут. Оборудование способно работать при температуре от -45 до +55°С и выдерживает жёсткий шторм со скоростью ветра до 30 м/с. При этом новая разработка отличается простотой настройки и представляет собой универсальную платформу, совместимую с широким спектром модемного оборудования. Благодаря сменным облучателям радиостанция способна работать в Ku-, Ka- и Q/Ka-диапазонах частот. https://zvezdaweekly.ru/news/20236141012-35Dqm.html ----------------------------------------------------- The global tactical military communications market, which comprises airborne, naval, man-portable, vehicular and stationary, is set to see substantial growth over the coming decade. According to market analysis by GlobalData says, by the end of 2028, the sector will be worth $151bn globally. This growth is driven largely by demand for man-portable innovations, which account for more than a third of the market (38%).approx $ 60 bn The global market for Defense Tactical Radio estimated at US$11.2 Billion in the year 2022, is projected to reach a revised size of US$23.6 Billion by 2030, growing at a CAGR of 9.8% over the analysis period 2022-2030 https://www.globenewswire.com/news-release/2023/12/04/2790152/0/en/Global-Defense-Tactical-Radio-Strategic-Market-Report-2023-2030-Rise-in-need-for-End-to-End-Automated-Tactical-Radio-Field-Testing-Platform-as-Military-Attempts-to-Modernize-Equipm.html SIGINT Global Market https://www.researchdive.com/5478/signals-intelligence-sigint-market ----------------------------- challenge was to instantaneously and continuously monitor 10 MHz – 18 GHz with sufficient accuracy and dynamic range to detect and report any RF signals that could potentially damage the sensors in the satellite payload. The system’s front end would be located close to the launch site, where it would be exposed to extreme environmental shock and vibration conditions, while the digital signal processing would be performed in a receiver at a sheltered location 10 km away. A 100 Gb/s fiber optic network would transport the high-speed digital data from the launch site to the receiver site. Size, weight, power, and cost (SWaP-C) were important drivers for development and manufacturing. After an in-depth design effort, BANC3’s team turned to Intel and Analog Devices to provide the critical components necessary to accomplish this challenging mission. This design is implemented using three AD9208 ADCs and one Intel® Stratix® 10 FPGA. https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-06/digital-receivers-revolutionize-rf-spectrum-monitoring-architectures-white-paper.pdf

milstar: to :https://guraran.ru/prezidiym_raran.html copy for information to .. re: все российские бронемашины в настоящее время оснащаются системами радиоэлектронной борьбы (РЭБ) "Лесочек". - Владимир Путин/ the double conversion architecture dramatically reduces the in-band spurs. State of the Art Tuner Chipsets for Electronic Warfare Applications 2-18 Ghz -стоимость ,технология ,схемотехника "Вы знаете: и в системах РЭБ многие вещи появляются. Вы наверняка знаете все эти названия, может быть, даже лучше меня. "Лесочек" - новая система, практически на все бронемашины ставится, ну, насколько это возможно, конечно. Будем наращивать, разумеется" - Владимир Путин стоимость важнейших компонентов для двухканального приемника 6000+900+4680+6000 =approx 17500 usd +фильтры +ниокр + сборка + настройка = approx 100 000 120 000 usd приемлемо ,compare стоимость снаряда 152 mm Exalibur 110 000 euro соответствующей технологии и схемотехники ADC/FPGA 0.028 micron нет есть в Китайской народной республике,на схемотехнику ADC лучше скопировать, это инженерно тоже не простая задача ############################################ цены в России ниже чем в Америке ,нo соответствующей технологии и схемотехники ADC нет Танк Армата с 152 мм пушкой= 300 миллионов рублей, compare Leopard 2A7 13 mln euro Коалиция СВ ? миллионов рублей compare Pzh 2000 17 mln euro Краснополь -3 миллионa рублей compare Exalibur 110 000 euro Активные боевые действия наступление 1000 Армата = 300 млрд рублей 25 боекомплектов на 50 дней 25x40x1000 1 миллион снарядов Краснополь = 3 триллионa рублей https://fei-elcomtech.com/wp-content/uploads/2019/11/Product-Release-SIR-4000.pdf SIR-4100 ELINT/MASINT Receiver: • Input Frequency 0.1 to 40 GHz • <100 usec in-band switching • 1.8 GHz IF Output with 1GHz BW and instantaneous bandwidth (up to 2 GHz) critical to RWR applications. два канала x 1.8 GHz IF Output with 1GHz BW ------------- смесители цена с военной приемкой MM1-1850SS+MM1-0626S 0.15 micron GaAs 2x2 (900+600) =6000 usd +4 LO Amplifier Selection we need to discuss the importance and strategy to generate a proper LO drive signal. 4x $226.61 =900 usd ADC AD9213-6G 0.028 micron с военной приемкой цену умножить на 2 2x2x1170 =4680 usd FPGA Xilinx Virtex 6 0.028 micron 1 на два канала с военной приемкой цену умножить на 2 3000x2=6000 usd https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-06/digital-receivers-revolutionize-rf-spectrum-monitoring-architectures-white-paper.pdf State of the Art Tuner Chipsets for Electronic Warfare Applications ----------------------------------------------------------------------------------------------------- после стоят АДС, FPGA как сказано выше ----------------------------------------------------------------------------------------------------------- https://markimicrowave.com/technical-resources/tech-notes/state-of-the-art-tuner-chipsets-for-electronic-warfare-applications/ By Marki Microwave, Posted Wed May 29 2019 Modern battlefields are awash in electronic signals from radars, jammers, and radio communications. Therefore, high linearity EW receivers for applications such as Radar Warning Receivers, Jammers, and Electronic Countermeasures are one of the most important capabilities for the modern warfighter. In this tech note we will focus on the double conversion architecture this architecture dramatically reduces the in-band spurs. ####################################### from option 3, as shown below: RF 2-17 GHz LO swept 23.5-40.5 GHz First IF 21.5 -22.5 GHz ,Fixed 2LO 23.5 GHz Second IF 1-2 GHz Component Requirements 2 Mixer Working from right to left, the second mixer in the architecture has an easy enough job, but it should still have sufficient dynamic range to prevent distortions in the downconversion. Marki recommends the MM1-0626S for this slot. https://octopart.com/mm1-0626ss-marki+microwave-136172355 10 $ 600.68 за один https://shop.markimicrowave.com/products/detail/mm10626hs-marki-microwave/690935/ Quantity Price 1 - 9 $ 614.70 10 - 24 $ 555.77 ------ 1 Mixer 0.15 micron GaAS The MM1-1850SS is a high linearity passive double balanced MMIC mixer. The S diode offers superior 1 dB compression, two tone intermodulation performance, and spurious suppression to other GaAs MMIC mixers. https://markimicrowave.com/products/connectorized/mixers/mm1-1850ss/ https://shop.markimicrowave.com/products/detail/mm11850ss-marki-microwave/686056/ Quantity Price 1 - 9 $931.50 10 - 24 $842.08 https://markimicrowave.com/technical-resources/tech-notes/state-of-the-art-tuner-chipsets-for-electronic-warfare-applications/ LO Amplifier Selection we need to discuss the importance and strategy to generate a proper LO drive signal. 1 - 9 $226.61 необходимо два https://markimicrowave.com/products/connectorized/amplifiers/amm-6702uc/ https://shop.markimicrowave.com/products/detail/amm6702ch-marki-microwave/685320/ ------------------- IP3 Analysis The dynamic range of a system is limited by noise (for low power signals) and distortion (for high power signals). The first component of distortion to be considered is the main signal compression as expressed by the P1dB. For an ultra-broadband system like the wideband tuner, however, the input signal is typically limited to a power level much lower than the P1dB. Spurious products (single and multitone) cause distortions that limit system performance much lower than the main signal compression. The first of these we’ll consider is multitone intermodulation distortion, as expressed by the IP3. Here is a comparison of the IP3 of the different mixer options under our standard frequency plan, but limited to the 2-18 GHz band (due to the band rolloff of the T3). ------------------------------ ADC https://www.analog.com/media/en/technical-documentation/data-sheets/ad9213.pdf AD9213-6G 0.028 micron $1,171.12 [url=https://www.analog.com/en/parametricsearch/10826#/p3062=1|1&p7=12|24&p1746=3G|20G]https://www.analog.com/en/parametricsearch/10826#/p3062=1|1&p7=12|24&p1746=3G|20G[/url] 6 GSPS Vp-p -1.4 volt Rin -50 Ohm AIN = −1.0 dBFS Fin 2600 mhz ENOB -8.4 bit SFDR 76 dbFS EXCLUDING 2 OR 3 HARMONIC -85 dbFS (IMD3, 2fIN1 − fIN2) fIN1 AND fIN2 = −7.0 dBFS fIN1 = 1842 MHz, fIN2 = 1847 MHz -80 dbFS 12 mm × 12 mm, 192-ball BGA-ED package Total Power Dissipation (Including Output Drivers -3.47 watt high speed ADC with a sample rate of 6 GSPS has a first Nyquist zone from DC to 3 GHz, and a second Nyquist zone from 3 GHz to 6 GHz. ---------------------------------------- the carrier frequency 1.8 GHz. Now the HD2 product would fall at 3.6 GHz, and the HD3 product would fall at 5.4 GHz—both of which are in the second Nyquist zone. These HD2 and HD3 products will alias to the first Nyquist zone at 2.4 GHz and 600 MHz, respectively. The HD2 product alias in the first Nyquist zone will occur at 2.4 GHz, and the HD3 product alias in the first Nyquist zone will occur at 600 MHz. What is interesting in the second use case is that now the HD2 and HD3 products are both above and below the desired tone. tone 1800 mhz ------------------------------- HD2 product would fall at 3.6 GHz, HD3 product would fall at 5.4 GHz ----------------------------------------------- HD2 and HD3 products will alias to the first Nyquist zone at 2.4 GHz and 600 MHz, hat is interesting in the second use case is that now the HD2 and HD3 products are both above and below the desired tone. 600mhz -Tone 1800mhz -2400 mhz -3600 mhz-5400mhz https://www.analog.com/media/en/technical-documentation/tech-articles/considering-gsps-adcs-in-rf-systems.pdf ------------------------------------------------------------------------------------ ADC components with sampling frequency in the range of gigasamples per are fundamental to capture wideband signals. In ADCs, one of the most important parameters is its spurious-free dynamic range (SFDR) that quantifies its ability to distinguish a carrier frequency from noise and harmonics so ADCs with a high SFDR can detect weaker signals in a noisy environment. SFDR can be improved by suppressing unwanted harmonics with antialiasing filters, but this is not feasible in wide-band applications, so the ADC must provide wideband SFDR. ####################################### Several requirements are common to almost any SIGINT application. First, the system must be able to capture a spectrum over a wide bandwidth. This includes devices with high dynamic range measurement systems, low noise-figures, and real-time capturing capabilities. Besides measuring over a wide spectrum, high-frequency resolution (< 1 kHz) is fundamental to improve detection sensitivity. https://www.mpdigest.com/2022/08/22/using-sdrs-for-signals-intelligence-sigint/ The global tactical military communications market, which comprises airborne, naval, man-portable, vehicular and stationary, is set to see substantial growth over the coming decade. According to market analysis by GlobalData says, by the end of 2028, the sector will be worth $151bn globally. This growth is driven largely by demand for man-portable innovations, which account for more than a third of the market (38%).approx $ 60 bn The global market for Defense Tactical Radio estimated at US$11.2 Billion in the year 2022, is projected to reach a revised size of US$23.6 Billion by 2030, growing at a CAGR of 9.8% over the analysis period 2022-2030 https://www.globenewswire.com/news-release/2023/12/04/2790152/0/en/Global-Defense-Tactical-Radio-Strategic-Market-Report-2023-2030-Rise-in-need-for-End-to-End-Automated-Tactical-Radio-Field-Testing-Platform-as-Military-Attempts-to-Modernize-Equipm.html SIGINT Global Market https://www.researchdive.com/5478/signals-intelligence-sigint-market

milstar: https://www.electronics.ru/files/article_pdf/8/article_8377_728.pdf https://www.electronics.ru/files/article_pdf/8/article_8377_728.pdf


milstar: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1gp66/1GP66_4E.pdf Rohde & Schwarz | Application Note TESTING TRUE PERFORMANCE OF ADCs USING R&S®SMA100B SIGNAL GENERATOR 26 4.3 Jitter and SNR Performance of the R&S®SMA100B as a Clock Source 4.4 SNR Performance from wideband approximations of the R&S®SMA100B as a Clock Source

milstar: https://www.analog.com/media/en/analog-dialogue/volume-39/number-2/articles/multichannel-a-d-converters.pdf averaging ADC

milstar: RE: A Review of RF Sampling / 8 bits of ENOB (effective number of bits) can be achieved over a 15 GHz span. This is pretty good, considering you might have paid $120k for a 13 GHz oscilloscope with the same performance. Now for the results! Looking at the signal-to-noise ration or SNR in Figure 6, it can be seen that 8 bits of ENOB (effective number of bits) can be achieved over a 15 GHz span. This is pretty good, considering you might have paid $120k for a 13 GHz oscilloscope with the same performance. https://www.analog.com/media/en/analog-dialogue/volume-51/number-4/articles/radically-extending-bandwidth-to-crush-the-x-band-frequencies.pdf 2x 2.6 GSPS 1120 USD за один корпус при продаже в партиях 1000+ 14-Bit, 2.0 GSPS/2.6 GSPS, JESD204B, Dual Analog-to-Digital Converter https://www.analog.com/media/en/technical-documentation/data-sheets/AD9689.pdf 14-Bit, 2 x 3.0 GSPS AD9208 1400 usd 0.028 micron https://www.analog.com/media/en/technical-documentation/data-sheets/AD9208.pdf Radio Architecture Matters: A Review of RF Sampling vs. Zero-IF https://www.analog.com/media/en/technical-documentation/tech-articles/radio-architecture-matters.pdf RF SAMPLING ADC S OFFER ADVANTAGES IN SYSTEMS DESIGN https://www.analog.com/en/technical-articles/rf-sampling-adc-offer-advantages-in-systems-design.html

milstar: После модернизации и усовершенствования производственных мощностей на заводе Микрон производилась тестовая партия чипов Эльбрус-4СМ (65 нм). https://www.iphones.ru/iNotes/kto-v-rossii-proizvodit-processory-platy-i-mikrochipy-kak-vyzhit-bez-tsmc-08-04-2022

milstar: 14 февраля 2024 «Основной санкционный удар был нанесён именно по нашим микроэлектронным технологиям. Американские и английские компании применяли ресурсы искусственного интеллекта по отслеживанию всех поставок в Россию необходимых нам компонентов и блокировали их. Мы с Владимиром Владимировичем [Путиным] обсуждали этот вопрос, и сегодня ситуация принципиально меняется. Мы разработали целую программу, чтобы не зависеть в области электронных технологий. Она касается и производства особо чистых материалов (мы заново начали создавать то, что когда-то потеряли), заново стали создавать программы по электронному машиностроению, станкам, оборудованию. Колоссальные деньги выделяются, программа идёт, и мы уверены, что в течение нескольких лет вложенные средства дадут результат», — успокоил участников форума президент РАН Геннадий Красников. Официальная статистика эту позитивную позицию подкрепляет. По данным Росстата, по итогам первого полугодия 2023 года оборот предприятий радиоэлектронной промышленности вырос на 32,8% в 2022 году и составил 932,6 млрд рублей. Также в Минпромторге заявили, что за 12 месяцев увеличился и объём отгруженной электроники собственного производства — с 656,3 до 930,5 млрд рублей, то есть на 41%. https://indpages.ru/elektr/mikroelektronika-ekstremalnoe-importozameshhenie/

milstar: The fundamental benefits of 28 nm ADCs are integral in enabling the next generation of wideband EW receivers and form a new foundation on which future systems will be built. 28 nm transistors have reduced parasitic gate capacitance, enabling faster switching due to the lower energy required to drive the switching. Because of this and the smaller physical transistor size of the 28 nm process, ADCs can not only achieve faster sample rates but also fit a greater number of transistors per square mm, leading to potentially greater digital processing capabilities. Taking the inherently lower power consumption into consideration makes ADCs on the 28 nm process key enablers in next-generation EW systems with performance and capability requirements previously considered impractical on the ≥65 nm process. The greater sample rates (several GSPS and above) achievable with 28 nm ADCs are one of the most attractive ADC features to most EW system designers, especially for SIGINT, electronic protect (EP), and electronic support (ES) applications. Just as important as ADC bandwidth is the resolution, which allows for greater SNR/SFDR and subsequent ability to detect, observe, and process a target signal. Undersampling beyond the 1st Nyquist is also possible as a result of higher analog input bandwidths. Moving to a 28 nm process also allows mixed-signal semiconductor manufacturers to integrate increasing amounts of digital signal processing and functionality into their high speed ADCs with no increase in (or even a reduction of) system SWaP. Digital features like integrated NCOs (numerically controlled oscillators) and DDCs (digital downconverters) push converter performance boundaries and allow for easing of system design challenges related to the higher converter data rates and high digital interface power consumption. Taking advantage of the smaller 28 nm process and increasing the on-chip DSP capabilities of ADCs can also offload much of the processing load and power consumption from the processor, allowing EW system designers to drive down system SWaP. While a faster 28 nm ADC enables a larger piece of the RF spectrum to be captured and observed, the signal of interest might still be of relatively small bandwidth compared to the ADC Nyquist bandwidth. Additionally, the vast amounts of data throughput from GSPS ADCs can lead to challenges finding a suitable processor and physically interfacing it to the ADC. Many 28 nm converters currently on the market use the JESD204B interface standard at lane rates above 10 Gbps, which can introduce board layout and signal integrity challenges associated with routing Gbps SERDES (serializer/deserializer) JESD lanes. Fortunately though, through integrated NCOs/DDCs and on-chip DSP, the ADC can convert the signal of interest down to a lower frequency or baseband, apply digital filtering, and decimate the digital data output rate so that more intensive processing can be performed on portions of the captured spectrum. Tunable NCOs allow the DDC to sweep across the digitized spectrum so that the entire spectrum can still be analyzed, but with the added benefits of processing gain and lower digital data output rates. Adding multiple NCOs and DDCs in parallel allows the user to preconfigure and quickly switch and fast hop between the DDCs, further reducing sweep times since NCO tuning is removed from the equation. The integrated DDCs also offer significant power savings in the digital JESD204B interface. JESD SERDES running at such high rates can add a watt or more to system power consumption so decimating the data rate down to lower speeds is very beneficial in this aspect. As high speed ADCs continue to push to higher sample rates, bit depths, and bandwidth, integrating DDCs and ADCs becomes more attractive to wideband EW receiver system designers since the enormous amount of digital data from the ADC can become difficult to process with a low SWaP processor. For more information on DDCs and some practical examples, please see “What’s Up with Digital Downconverters” Part 1 and Part 2 by Jonathan Harris. https://www.analog.com/en/resources/technical-articles/28-nm-adcs-enable-next-gen-electronic-warfare-rec-sys.html https://www.analog.com/media/en/technical-documentation/data-sheets/5552f.pdf

milstar: Next-Generation ADC Performance Many of today’s EW receivers feature sub-octave instantaneous bandwidth (IBW) that is limited by the older generation data converter. These will be replaced tomorrow with multi-octave wideband digital receivers spanning several GHz of IBW. For example, in the coming years a growing number of sensing platforms will employ ADI converter chips featuring ADCs and DACs with the ability to process greater than 4 GHz IBW while maintaining SFDR greater than 70 dB.2,3,4 A popular low SWaP, wideband digital receiver ADC use case might be: X An ADC sample rate of ~15 GSPS X A direct sample of the first Nyquist zone (that is, dc to 6 GHz) X A direct sample of the second Nyquist zone (that is, 8 GHz to 14 GHz) X RF block convert middle (6 GHz to 8 GHz) and higher (>14 GHz) bands EW receivers need to cover higher and higher swaths of spectrum from 18 GHz to 50 GHz and beyond. The ADC’s high second Nyquist zone eases the frequency plan, allowing simple RF front-end block converters with relaxed, smaller SWaP RF filters. The following discussion considers an RF front end cascaded with a high sample rate ADC similar to the previous example Visit analogdialogue.com Your Engineering Resource for Innovative DesignVolume 55, Number 1, 2021 36 CTSD Precision ADCs—Part 1: How to Improve Your Precision ADC Signal Chain Design Time Dynamic Range in Wideband Digital Receivers Receiver designers optimizing dynamic range must balance sensitivity (NF) with linearity (IP2, IP3) as these RF device attributes usually move against each other. Dynamic range is bound by sensitivity at lower RF levels and linearity at higher RF levels. As a rule of thumb, the maximum allowed receiver operating level is set so that the multisignal intermodulation distortion (IMD) spurious levels are equal to the noise power, as shown in Figure 1. Modern systems use adaptive instantaneous bandwidth channelization and processing bandwidths (Bv ), which moves the noise floor up and down 10Log(B v ). The nuanced topic of processing bandwidth is critical and receives its own discussion later.

milstar: https://www.analog.com/en/resources/analog-dialogue/archives.html

milstar: https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/Wideband_RF_Signal_Processing_Solutions.pdf https://www.vadatech.com/media/FMC216_FMC216_Datasheet.pdf Considering GSPS ADCs in RF Systems by Wyatt Taylor Nov 1 2021 https://www.analog.com/en/resources/technical-articles/considering-gsps-adcs-in-rf-systems.html Figure 4. The AD9082 with decimation set to 96×. Measured SNR is 72.8 dB and measured SFDR is 105 dB. SNR is a more linear improvement, as the decimation filters reduce the amount of integrated noise for the receiver chain. With no decimation, the SNR is 56.4 dBFS; at 8× decimation, the SNR is 63.5 dBFS; and at 96× decimation, the SNR is 72.8 dBFS. As a point of comparison, best-in-class data converter performance for ~100 MSPS devices like the AD9467 and LTC2208 is an SNR of 75 dB and an SFDR of 100 dBc. This class of performance has long been required by the heterodyne signal chains in which ADCs like the AD9467 were commonly used. The AD9082 can achieve the same noise and dynamic range, while eliminating the heterodyne signal chain size, weight, power, and cost—and it is also able to scale to much higher instantaneous bandwidths as required! he AD9082 can be programmed to many modalities. In a wideband mode, the AD9082 can achieve SNR of ~56 dBFS and SFDR of ~70 dBc, and through a software reconfiguration to a narrow-band mode the AD9082 can achieve SNR of ~73 dBFS and SFDR of ~105 dBc. That flexibility between narrow-band and wideband modes while maintaining best-in-class performance in both is unique to devices like the AD9082.

milstar: Receiver Signal Chain Overview and Theory of Operation ad9082 https://wiki.analog.com/resources/eval/developer-kits/space-based-satcom-ref-design/rx-overview Satcom Phased Array Reference Design for Space https://wiki.analog.com/resources/eval/developer-kits/space-based-satcom-ref-design

milstar: Processing Bandwidth and System Performance Trade-Offs Relating decimation M and FFT N back to high priority performance attributes: Latency is the time to sense and process successive spectral captures, and it requires as short a time as possible. Many systems require near real-time operation. This dictates M × N be as small as possible. As the FFT size increases, the spectral resolution improves and noise floor decreases as the integrated noise is spread over more bins. The trade-off is acquisition time, which is a big deal and is simply: Equation 9 https://www.analog.com/en/resources/analog-dialogue/articles/sfdr-considerations-in-multi-octave-wideband-digital-receivers.html The minimum detectable pulse width (PW) sets the minimum allowable IF channel bandwidth as the spectral content of a shorter time pulse spreads over a relatively wider frequency band. If the IF channel bandwidth is too narrow, the signal spectral content truncates, and the short time pulse isn’t detected properly. Minimum IF BW, which sets maximum allowable M, must meet the criteria: Spectral resolution and sensitivity improve as the FFT bin narrows, which requires increasing N. Longer pulse widths and PRIs require finer resolution to resolve closer spectral lines, which means larger N for proper detection. Increasing N improves spectral line resolution, but only within the IF bandwidth defined by M. If too high a decimation is used, increasing N improves the spectral resolution within the IF BW set by M, but cannot recover the missing signal bandwidth. For example, a pulse train with a pulse width below the minimum receiver pulse width will have a frequency domain sinc function whose main lobe exceeds the decimation bandwidth. Increasing N will help resolve the PRF of the train, but will do nothing to resolve the pulse width; that information is lost. The only fix is to decrease decimation M, increasing the IF bandwidth. Decimation, FFT, and Detection of Pulse Trains EW wideband digital receivers spend a lot of their effort de-interleaving, identifying, and tracking simultaneous incident radar pulse trains. Carrier frequency, pulse width, and pulse repetition interval (PRI) are radar signatures that are critical in figuring out who’s who. Both the time and frequency domain are used in detection schemes.9 An overarching objective is to sense, process, and react to the pulse trains in as short a time duration as possible. Dynamic range is critical because the EW receiver needs to simultaneously track multiple distant targets while being bombarded with high energy jamming pulses. Pulse Train FFT Examples Two pulse train examples are presented. The first represents a pulsed doppler radar exhibiting a very short PW (100 ns) at 10% duty cycle, resulting in very high PRF. The second simulates a pulsed radar exhibiting comparatively longer PW and PRI (lower duty cycle, lower PRF). The following plots and tables illustrate the impact of decimation M and FFT length N on time, sensitivity (noise floor), and spectral resolution. Table 1 summarizes the parameters for easy comparison. The fictional values do not represent specific radars but are nevertheless in a realistic ballpark.10 Table 1. Comparison of Example Pulsed Doppler and Pulsed Radar Attributes Summary Electronic warfare’s imminent evolution toward multi-octave, multi-GHz instantaneous bandwidth RF tuners and wideband digital receivers introduce IMD2 effects that challenge dynamic range. Today’s consideration of SFDR in terms of IMD3 will broaden to include IMD2, and the designer will use both the SFDR2 and SFDR3 equations. The system noise floor is dynamic because processing bandwidth changes on-the-fly based upon waveform detection and time requirements. When designing the optimal noise floor, decimation M and FFT depth N together define the FFT bin width, yet they each have separate important impacts to consider. Example pulse train FFTs of varying M and N are provided. As ADC performance improves, the front end continues to rely on high linearity wideband RF components with tunable attributes and frequency selectivity. The front end should be designed in cascade with the ADC’s RF attributes.

milstar: Скоростной АЦП с нуля. 16 бит за 10 лет https://habr.com/ru/companies/milandr/articles/530662/

milstar: System-Level Radiation Hardening Ray Ladbury NASA Goddard Space Flight Center https://ntrs.nasa.gov/api/citations/20140010782/downloads/20140010782.pdf

milstar: High-Speed ADCs Q&A AD9467 : Very High Dynamic Application, fs/2^17 Spurs https://ez.analog.com/data_converters/high-speed_adcs/f/q-a/21541/ad9467-very-high-dynamic-application-fs-2-17-spurs https://www.analog.com/media/en/reference-design-documentation/reference-designs/CN0227.pdf https://panoradio-sdr.de/analog-digital-coverter/ https://panoradio-sdr.de/analog-digital-conversion/ High Resolution Time-Frequency Representations for RF Signals Time-frequency representations are used to analyze time-varying signals with respect to their spectral contents over time. Apart from the commonly used short-time Fourier transform, advanced methods can provide higher resolution. This article presents the wavelet transform, Wigner-Ville distribution and reassignment techniques for high-resolution time-frequency representation of RF signals. Short-Time Fourier and Gabor Transform The Short-Time Fourier transform (STFT) is the most widely known and commonly used time-frequency representation. It is well understood, easy to interpret and there exist fast implementations (FFT). Its drawbacks are the limited and fixed resolution in time and frequency. The idea of the STFT is to move a sliding window w(t)w(t) over the signal x(t)x(t) to be analyzed, such that a particular time span of the signal is selected. For each position of the window a Fourier transform is calculated, that represents the frequency content of that time span. The STFT results in the two dimensional time-frequency representation: A short window captures only a short period of time and has thus a precise time resolution. However, the frequency resolution is poor, because the windowed signal contains only few time samples resulting in only few frequency bins during FFT calculation. A long window provides poor time resolution, but creates precise frequency information due to the larger number of samples for the FFT. Gabor transform The trade-off between time and frequency resolution is known as the uncertainty principle. It states that the product of resolution in time and frequency is limited: BT≥1/4πBT≥1/4π (with B being the bandwidth of one frequency bin). A special case of the STFT is known as the Gabor transform. The Gabor transform fulfills the uncertainty equation above with equality, i.e. it has has the best joint time and frequency resolution. The Gabor transform is simply a STFT with the window being a Gaussian function w(t)=e−αt2w(t)=e−αt2, where the parameter αα controls the window length, i.e. the emphasis on time or frequency resolution. Wavelet Transform The result of the wavelet transform differs from the STFT in that its time-frequency resolution is not fixed and depends on the frequency (multi-scale property, see Figure below). In general, the wavelet transform represents lower frequency components with finer frequency resolution and coarser time resolution. For higher frequencies the reverse is true: frequency resolution is coarser and time resolution is finer. This variable resolution property of the wavelet transform is sometimes superior to the Fourier approach, because it may give clearer spectral information for certain applications, such as audio signal processing. The wavelet transform compares the time domain signal x(t)x(t) with a short analysis function Ψ(t)Ψ(t), analog to the STFT. Ψ(t)Ψ(t) is called the wavelet and can take on many forms as will be described below. During the calculation of the transform the wavelet is repeatedly moved over the signal (time shifted). In each pass the wavelet is scaled differently in time, i.e. dilated to a different length (dilation or scale). This creates a two dimensional representation of time (i.e. shift) and scale (can be related to frequency). The time shift is denoted by bb, the scale by aa. The continuous wavelet transform (CWT) is defined as:

milstar: amartology 28 мар 2014 в 10:46 Российская микроэлектроника для космоса: кто и что производит https://habr.com/ru/articles/217427/

milstar: https://www.vadatech.com/media/AMC526_AMC526_Datasheet.pdf

milstar: to: https://guraran.ru/prezidiym_raran.html to: copy for information to : re: Капитан 3-го ранга Максим Климов О ситуации на фронте |- видео c 5.50 ...основное средство обнаружения беспилотников глаза и уши высокая интенсивность применения украинских беспилотников,отсутствие российских средства радиоразведки и радиоподавления тактического уровня https://www.youtube.com/watch?v=0ZENoU4FKLY видео c 5.50 ...основное средство обнаружения беспилотников глаза и уши Радиоразведка - измерительный радиоприемник это примерно приемник радиоразведки российский разработчик https://inwave.ru/products/radiomonitoring/ диапазон рабочих частот комплексов от 8 кГц до 13.5 ГГц покрывает практически все известные стандарты и диапазоны работы средств связи Высокая скорость сканирования (до 20 ГГц/с) и ширина полосы анализа приемных устройств (260 МГц) Средства радиоразведки ВСУ (Часть 3) Минерва - широкополосный радиомониторинговый приемник. https://dzen.ru/a/YW71Ws0CtGbuYtGm радиомониторинг, поиск, обнаружения и классификация источников радиоизлучения в диапазоне частот 25-40000 МГц с максимальной мгновенной полосой обзора 800 МГц. это конечно зарубежные аналого-цифровые преобразователи + ПЛИС Xilinx,Altera ( БПЛА Орлан 10 стоимость 10-15 миллионов рублей ПЛИС Xilinx Vertex 6 0.04 micron ) важнейшeе - динамические характеристики приемника - сигнал/шум,динамический диапазон без AРУ,SFDR,IIP3 IMD это смесители и АЦП c IIP3 35 db ширина полосы анализа приемных устройств (260 МГц) - АЦП 2.5 GSPS с высоким динамическим диапазоном при широкополосном сигнале AD9625 -2.5 GSPS 0.065 micron стоимость 1100 долларов в партиях пo 1000 штук , с военной приемкой примерно в 2 раза дороже такая технология в России есть на микроне ,отсутствие проекта ,отсталость в схемотехнике https://www.analog.com/media/en/technical-documentation/data-sheets/AD9625.pdf Миландру потребовалось 10 лет для разработки АЦП класса 200 msps , который все равно изготавливается в Малайзии и хуже чем AD9467 выпуска 2010 года с проектными нормами 0.18 micron,которые давно есть в России отсталость российских схемотехникoв и некомпетентность военно-бюрократического аппарата Министерства обороны --------------------------------------------------------------------------------- 0.09 микрон есть в России с 2010 года,2010 АЦП AD9467 0.18 микрон 250 msps SFDR 100 dbfs at 170 mhz пуcть полная копия .... за 14 лет так и не появился -------------------- https://habr.com/ru/companies/milandr/articles/530662/ analog_design 1 дек 2020 в 09:18 Скоростной АЦП с нуля. 16 бит за 10 лет Analog Device .18 micron AD9467-EP https://www.analog.com/media/en/technical-documentation/data-sheets/AD9467-EP.pdf в России технология давно есть AD9467 250 msps на рынке с 2010 года за 120 долларов ,военная версия в 2 раза дороже рекордные показатели пo динамическом диапазону , для системы связи приемник с двойным или тройным преобразованием частоты в диапазонах 0-8 Гигагерц очень хорош, для системы радиоразведки если полоса сигнала не больше 50-60 мегагерц тоже индивидуальная тактическая радиостанция весом 1.2-1.5 кг с разъемами для подключения внешних остронаправленных антенн, усилителя радиоподавления 0-8 Гигагерц один канал связь со своим БПЛА ,второй для сканирования излучение БПЛА противника сканер с размерами 165mm x 103mm x 25mm ADC класса 100-200 msps The scan time from 100 kHz to 6 GHz in 20 MHz steps was well under 1second. https://www.armms.org/media/uploads/1304696513.pdf The original design brief was to achieve a receiver capable of scanning a band from 100 kHz to 6 GHz in less than 1 second. The additional requirements were: an instantaneous bandwidth of up to 20 MHz; a final IF suitable for feeding a digital receiver with around 100 Msps sample rate; a minimum signal sensitivity of -107 dBm and; a dynamic range of at least 80 dB. СБИС 16-разрядного АЦП конвейерного типа с частотой дискретизации 200 МГц изготовлена по КМОП 90-нм https://i-progress.tech/products/bis-i-sbis/spetsialnye-sbis/sbis-16-razryadnogo-atsp/ идеи все давно реализованы ,идти с авиацией ... тоже самое на автомашине Тигр https://www.ausairpower.net/APA-Flanker-Radars.html ############## https://markimicrowave.com/technical-resources/tech-notes/state-of-the-art-tuner-chipsets-for-electronic-warfare-applications/ By Marki Microwave, Posted Wed May 29 2019 Modern battlefields are awash in electronic signals from radars, jammers, and radio communications. Therefore, high linearity EW receivers for applications such as Radar Warning Receivers, Jammers, and Electronic Countermeasures are one of the most important capabilities for the modern warfighter. 28 nm Analog-to-Digital Converters Enable Next-Generation Electronic Warfare Receiver Systems https://www.analog.com/en/resources/technical-articles/28-nm-adcs-enable-next-gen-electronic-warfare-rec-sys.html стоимость важнейших компонентов для двухканального приемника 6000+900+4680+6000 =approx 17500 usd +фильтры +ниокр + сборка + настройка = approx 100 000 120 000 usd приемлемо ,compare стоимость снаряда 152 mm Exalibur 110 000 euro соответствующей технологии и схемотехники ADC/FPGA 0.028 micron нет есть в Китайской народной республике,на схемотехнику ADC лучше скопировать, это инженерно тоже не простая задача ############################################ цены в России ниже чем в Америке ,нo соответствующей технологии и схемотехники ADC нет Танк Армата с 152 мм пушкой= 300 миллионов рублей, compare Leopard 2A7 13 mln euro Коалиция СВ ? миллионов рублей compare Pzh 2000 17 mln euro Краснополь -3 миллионa рублей compare Exalibur 110 000 euro Активные боевые действия наступление 1000 Армата = 300 млрд рублей 25 боекомплектов на 50 дней 25x40x1000 1 миллион снарядов Краснополь = 3 триллионa рублей ------ смесители цена с военной приемкой MM1-1850SS+MM1-0626S 0.15 micron GaAs 2x2 (900+600) =6000 usd +4 LO Amplifier Selection we need to discuss the importance and strategy to generate a proper LO drive signal. 4x $226.61 =900 usd ADC AD9213-6G 0.028 micron с военной приемкой цену умножить на 2 2x2x1170 =4680 usd FPGA Xilinx Virtex 6 0.028 micron 1 на два канала с военной приемкой цену умножить на 2 3000x2=6000 usd https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-06/digital-receivers-revolutionize-rf-spectrum-monitoring-architectures-white-paper.pdf State of the Art Tuner Chipsets for Electronic Warfare Applications ----------------------------------------------------------------------------------------------------- после стоят АДС, FPGA как сказано выше ----------------------------------------------------------------------------------------------------------- https://markimicrowave.com/technical-resources/tech-notes/state-of-the-art-tuner-chipsets-for-electronic-warfare-applications/ By Marki Microwave, Posted Wed May 29 2019 Modern battlefields are awash in electronic signals from radars, jammers, and radio communications. Therefore, high linearity EW receivers for applications such as Radar Warning Receivers, Jammers, and Electronic Countermeasures are one of the most important capabilities for the modern warfighter. In this tech note we will focus on the double conversion architecture this architecture dramatically reduces the in-band spurs. ####################################### from option 3, as shown below: RF 2-17 GHz LO swept 23.5-40.5 GHz First IF 21.5 -22.5 GHz ,Fixed 2LO 23.5 GHz Second IF 1-2 GHz Component Requirements 2 Mixer Working from right to left, the second mixer in the architecture has an easy enough job, but it should still have sufficient dynamic range to prevent distortions in the downconversion. Marki recommends the MM1-0626S for this slot. https://octopart.com/mm1-0626ss-marki+microwave-136172355 10 $ 600.68 за один https://shop.markimicrowave.com/products/detail/mm10626hs-marki-microwave/690935/ Quantity Price 1 - 9 $ 614.70 10 - 24 $ 555.77 ------ 1 Mixer 0.15 micron GaAS The MM1-1850SS is a high linearity passive double balanced MMIC mixer. The S diode offers superior 1 dB compression, two tone intermodulation performance, and spurious suppression to other GaAs MMIC mixers. https://markimicrowave.com/products/connectorized/mixers/mm1-1850ss/ https://shop.markimicrowave.com/products/detail/mm11850ss-marki-microwave/686056/ Quantity Price 1 - 9 $931.50 10 - 24 $842.08 https://markimicrowave.com/technical-resources/tech-notes/state-of-the-art-tuner-chipsets-for-electronic-warfare-applications/ LO Amplifier Selection we need to discuss the importance and strategy to generate a proper LO drive signal. 1 - 9 $226.61 необходимо два https://markimicrowave.com/products/connectorized/amplifiers/amm-6702uc/ https://shop.markimicrowave.com/products/detail/amm6702ch-marki-microwave/685320/ ------------------- IP3 Analysis The dynamic range of a system is limited by noise (for low power signals) and distortion (for high power signals). The first component of distortion to be considered is the main signal compression as expressed by the P1dB. For an ultra-broadband system like the wideband tuner, however, the input signal is typically limited to a power level much lower than the P1dB. Spurious products (single and multitone) cause distortions that limit system performance much lower than the main signal compression. The first of these we’ll consider is multitone intermodulation distortion, as expressed by the IP3. Here is a comparison of the IP3 of the different mixer options under our standard frequency plan, but limited to the 2-18 GHz band (due to the band rolloff of the T3). ------------------------------ ADC https://www.analog.com/media/en/technical-documentation/data-sheets/ad9213.pdf AD9213-6G 0.028 micron $1,171.12 ------------ 61-й Гв. бригады морской пехоты связь необходима как воздух, так как стандартная зеленая (станция "Азарт") попала в руки к врагу еще в 2017 году, и в средствах РЭР ВСУ с 2018 года закладывался опционал для её вскрытия и выявления - в частности переносной РЭР "Пластун". Врагу даже не было необходимости в расшифровке переговоров через "Азарт" - радиостанции просто высекали по частоте и накрывали артиллерией. https://voenhronika.ru/publ/vojna_na_ukraine/odinnadcatyj_otchet_peredacha_sredstv_svjazi_i_dopolnenij_k_nej_v_shtorm_61_j_gv_brigady_zakuplennye_na_sredstva_sobrannye_chitateljami_sajta_4_video/60-1-0-15050 -------------- AN/PRC-162 Radio from Collins Aerospace https://www.collinsaerospace.com/what-we-do/industries/military-and-defense/communications/ground-communications/ground-vhf-uhf-l-band-communications/trunet-an-prc-162-v1-networked-communications-ground-radio https://prd-sc102-cdn.rtx.com/-/media/ca/product-assets/marketing/p/prc-162-ground-networking-radio-data-sheet.pdf?rev=a396cb88722b49de91d7b2dcb3ea8eda&hash=3673D07B0842D8A568F70D4768BF2F1D Wideband - UHF: 225-450 MHz - L-BAND: 1250 - 1450 MHz, 1755-1850 M Dimensions 8.5” W x 3.4” H x 7.8” D (without battery) 21.6 cm W x 8.6 cm H x 19.81 cm D (without battery) 8.5” W x 3.4” H x 13” D (with battery) 21.6 cm W x 8.6 cm H x 33.02 cm D (with battery) Weight 9.5 lbs (without battery) 13.3 lbs (with battery) 4.3 kg (without battery) 6.03 kg (with battery) A few military radios use single sideband (SSB), which can be considered a form of AM. Most of the radios used in the military, however, are FM. These provide flexible, quick, but still reliable communication. The SINCGARS radios mentioned above are a part of the FM radios family. https://prd-sc102-cdn.rtx.com/-/media/ca/product-assets/marketing/v/vrc-126-127-mounted-ground-vehicle-data-sheet.pdf?rev=460b48464b9e4edc998a6315acd45122&hash=B7531027747336262C4EB27D70C9F3EB https://www.l3harris.com/sites/default/files/2023-05/cs-tcom-an-prc-163-multi-channel-handheld-radio-datasheet-r.pdf Ultra ORION X500-S X500-S is the ideal solution for amphibious operations, maintaining secure high capacity connectivity between floating operations centers, landing crafts and land- based command posts. It offers long range communications of over 30 nautical miles in ship-to-shore applications Frequency Band 3 (L-Band, 1350-1850 MHz), Band 3+ (L/S-Band, 1350-2690 MHz), Band 4 (C-Band, 4400-5000 MHz), 2.4 GHz ISM, 5.2/5.8 GHz NII/ISM, LTE (700 MHz) Throughput Up to 500 Mbps for system Number of Channels 3 (2 SDR + 1 secure access channel) Radio Access Method TDD/FDD Modulation & Coding BPSK up to 128QAM with Automatic Modulation & Coding (AMC) Size (HxWxD) 4 x 11.8 x 12'' (102 x 304 x 300 mm) Weight Up to 21 lbs (9.5 kg) https://datasheet.datasheetarchive.com/originals/crawler/ultra-tcs.com/3206aaf6f214faf50d8f5bc59f2e2a71.pdf https://fei-elcomtech.com/wp-content/uploads/2019/11/Product-Release-SIR-4000.pdf Ultra – Performance, Receiver up to 40 GHz SIR-4100 ELINT/MASINT Receiver: • Input Frequency 0.1 to 40 GHz • <100 usec in-band switching • 1.8 GHz IF Output with 1GHz BW • 160MHz & 70MHz IF with up to 80MHz BW • Graphical User Interface software ----------------------------- https://ieeexplore.ieee.org/document/10276399 In this paper, a class-C power amplifier (PA) which is broadband and high-gain with an automatic power control loop and a load compensation circuit is proposed. The fundamental power amplifier unit is designed using the GaN HEMT, and the matching circuit is implemented using lumped parameter capacitance and distributed parameter inductance, which can get a further reduction of insertion loss and improvement of the VSWR of the input return loss. According to experimental findings, an output power of 200 W, a gain of more than 47 dB, and a saturated power additive efficiency (PAE) of 20% can be obtained in the 1-6 GHz frequency band. -------------- prototype direction finding 1 GSPS ADC TI ADS5400 https://www.ti.com/lit/ds/symlink/ads5400.pdf?ts=1713025592005&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FADS5400 https://www.ti.com/product/ADS5400 Virtex 6 Xilinx FPGA https://www.xilinx.com/publications/prod_mktg/Virtex6_Product_Brief.pdf page 59 https://digital.wpi.edu/pdfviewer/6395w8650 https://digital.wpi.edu/concern/student_works/g158bj99v?locale=en --------------------------- 1.2 Jamming Strategies Jamming is the ability to interfere, distort, or prevent the signal transmission be- fore it received by its desired receiver. There are different ways to place the jamming signal within the spread spectrum bandwidth. In this section, the most effective and commonly used strategies of jamming will be presented. 1.2.1 Barrage Noise Jammer The jammer transmits bandlimited white Gaussian noise. It is usually assumed that the jammer power spectrum covers exactly the same frequency range as the spread spectrum signal. The effect of the barrage noise jammer on the spectrum is to increase the Gaussian noise level at the output of the receiver down converter. If the power of the jammer signal is PJ watts, and signal has a bandwidth of W Hz, the single-sided power spectral density (PSD) of the jammer is NJ = PJ /W . 1.2.2 Partial Band Jammer To jam a spread spectrum signal, it is typically more effective to transmit all the available jamming power in a limited bandwidth. This is called a partial band jammer. If the fraction of the spread spectrum signal bandwidth which is jammed is denoted by q, the PSD of the partial band jammer is NJ = PJ /qW , where PJ is the total jamming power and, qW is the limited bandwidth of the signal which is jammed. The partial band jammer is particularly effective against frequency hopping spread spectrum systems because the signal will hop in and out of the jamming band and can be seriously degraded in the jamming band [32], [33]. 1.2.3 Single Tone Jammer The single tone jammer transmits an unmodulated carrier with power PJ some- where in the spread spectrum signal bandwidth. The single tone jammer is easily to generate and is rather effective against direct sequence spread spectrum systems. To achieve the maximum effectiveness of this jammer, the jamming tone should be placed at the center of the spread spectrum signal bandwidth. The single tone jammer is less effective against frequency hopping, since the frequency hopping instantaneous bandwidth is small and, for large processing gains the probability of any hop being jammed is small [33]. 1.2.4 Multiple Tone Jammer A better tone jamming strategy against frequency hopping systems is to use several tones instead of a single tone. However, the power of the single tone jammer will be shared by these multiple jamming tones. The jammer selects a number of tones so that the optimum degradation occurs when the spread spectrum signal hops to a jamming tone frequency. The optimum number of tones is a function of the received ratio of signal power to jammer power (PS /PJ ). Multiple tone jamming is also effective against hybrid systems [33]. 1.2.5 ON-OFF Jammer The ON-OFF jammer (pulsed noise jammer) transmits a pulsed band limited Gaussian noise signal whose power spectral density just covers the spread spectrum system bandwidth W . The duty factor (the fraction of time during which the jammer turns on) for the jammer is denoted by ρ. The received jammer power spectral density is PJ /ρW . This pulsed technique can also be used for single tone, multiple tone and partial band jammers. 1.2.6 Repeater Jammer A repeater jammer receives the spread spectrum signal, distorts it in some well defined manner, and retransmits the signal at high power. The spread spectrum receiver then receives the distorted signal at high power and it will track and de- modulate this distorted signal. However, there are two main issues that should be considered for this jammer. Firstly, the repeater jammer must distort the spread spec- trum signal or else the jammer will act as a power amplifier for the desired signal. Secondly, receiving and transmitting simultaneously in the same band of frequencies presents formidable practical problems for the jammer. 1.2.7 Smart Jammer For the jammer to be most effective, the jamming signal must be adapted to the spread spectrum system and to the actual received signal power. A jammer which has knowledge of the type of signaling being used, which can accurately predict the received signal power, and which can adapt to transmit the optimum jamming signal is called a smart jammer. A smart jammer is usually assumed in all worst case designs



полная версия страницы