Форум » Дискуссии » где груши ? наполеон ... Связь /C3I/ (продолжение) » Ответить

где груши ? наполеон ... Связь /C3I/ (продолжение)

milstar: Прибытие прусского 4-го корпуса В 11 утра Блюхер двинулся из Вавра по труднопроходимым дорогам в сторону Ватерлоо. Груши еще был в Валене, в 11:30 он услышал первые выстрелы - это начался штурм Угумона. Груши все же предположил, что это стреляют арьергарды Веллингтона и не отменил наступление на Вавр. Генералы (Жерар) предлагали "идти на пушки"(на звук ################################################################################## стрельбы), но Груши не был уверен в правильности этого хода и не знал намерений Наполеона на свой счет. ############################################################################# В полдень авангард Бюлова находился в Шапель-Сен-Ламбер (6 километров от Планшенуа и 4 от фермы Папелотта). Цитен двигался примерно тем же путем - из Вавра в Оэн. Около 13:00 Блюхер был уже в Шапель-Сен-Ламбер и примерно через полчаса двинулся через болотистую долину на Планшенуа. В 16:00 Груши приблизился к Вавру и получил письмо Наполеона от 10 часов утра, ######################################################### в котором Наполеон одобрял движение к Вавру. Груши убедился, что поступает в соответствии с планами Наполеона. ################################################################################# Около 17:00 Груши получил письмо (от 13:30) с приказом идти на соединение с Наполеоном, ############################################################### но он уже втянулся в бой под Вавром. У его были все шансы разгромить генерала Тильмана, который предупредил об этом Блюхера. Тот ответил: "Пусть генерал Тильманн защищается, как только может. Его поражение в Вавре не будет иметь значения, если мы победим здесь" http://ru.wikipedia.org/wiki/%D0%91%D0%B8%D1%82%D0%B2%D0%B0_%D0%BF%D1%80%D0%B8_%D0%92%D0%B0%D1%82%D0%B5%D1%80%D0%BB%D0%BE%D0%BE

Ответов - 206, стр: 1 2 3 4 5 6 7 8 9 10 11 All

milstar: MFSK16 https://www.qsl.net/zl1bpu/MFSK/datmodes2.pdf The time-based interleaving of this mode coupled with the noise-rejecting small bandwidth allowed MFSK16 to out-perform all of the other modes. Reception was highly immune to short bursts of noise. However, the longer bursts (there were a few lasting approximately three seconds) took their toll and it was noticed that MFSK16 was slow to recover in this situation, taking typically two seconds to resynchronise. As previously, it was interesting to note that the difference in signal strength between perfect copy and virtually unreadable text was just 1dB!

milstar: 8 Designing Digital Communications Systems https://eletrica.ufpr.br/evelio/TE111/art_sklar2_designing.pdf page 8 Table 1 Symbol Rate, Minimum Bandwidth, Bandwidth Efficiency, and Required Eb/N0 for MPSK and Noncoherent Orthogonal MFSK Signaling at 9600 bit/s

milstar: Рис. 2 - Использование частоты схемой MFSK, для M = 4 str 5 https://edu.tusur.ru/publications/9176/download


milstar: https://repository.arizona.edu/bitstream/handle/10150/608953/ITC_1974_74-04-1.pdf?sequence=1&isAllowed=y CAPACITY OF NONCOHERENT MFSK CHANNELS1 I. BAR-DAVID S. A. BUTMAN M. J. KLASS B. K. LEVITT R. F. LYON Jet Propulsion Laboratory Pasadena, California Besides the bandwidth expansion problem, a more severe constraint on M is receiver complexity, since M envelope detectors are needed. If each output is quantized to Q levels, then M log2Q bits of storage are needed. For a given complexity in terms of storage requirements, there is a tradeoff between M and Q that typically results in different optimum parameters in the low and high ST/N o ranges. The tradeoff is illustrated in Figure 11 for M log2Q = 16 and for M log2Q = 8.

milstar: The effectiveness of partial-band noise jamming as an electronic countermeasure (ECM) against frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals has been widely documented. Houston [1) demonstrated that an optimized partial-band duty factor can severely degrade uncoded FH/MFSK transmissions, resulting in an inverse-linear relationship between the bit error rate (BER) and the signal-to-noise ratio (SNR). Viterbi and Jacobs (2) showed that most of this jamming advantage can he recovered (and an exponential BER-SNR dependence restored) through the use of optimized time diversity, which is a simple repetition code. Later articles explored the improvements afforded by more sophisticated block and convolutional codes https://ntrs.nasa.gov/api/citations/19850015886/downloads/19850015886.pdf ince we will see later that this M-ary band structure can be exploited by a smart multitone jammer, a more sophisticated (and expensive) FH/MFSK system might use not one but M frequency synthesizers to independently hop each MFSK signal [9]; we will assume that independent hopping is not used in this analysis.

milstar: BPSK Rate 5/16 Turbo 2.4 dB (2.1 dB) BER 10⁻6 2.7 dB (2.4 dB) BER 10⁻8 0.31 bps/Hz 3.2 x bit rate 3808 kHz Turbo Product Coding FEC in Comtech EF Data Satellite Modems https://www.comtechefdata.com/files/appnotes-pdf/The%20Case%20for%20Turbo%20Product%20Coding%20in%20Satellite%20Communications.pdf Rate 21/44 and Rate 5/16 (Flux density reduction modes) Two further code rates - Rate 21/44 BPSK (very close to Rate 1/2) and Rate 5/16 BPSK (very close to Rate 1/3) were then added for a military customer and delivered in June 2000. These two rates were developed to address an entirely different case, namely that of transmission from very small antennas, with limited transmitter power. For a dish Turbo Product Coding FEC in Comtech EF Data Satellite Modems Rev. 3 – September 3, 2002 Comtech EF Data Page 6 antenna, the gain is directly proportional to its area, and the lower the gain, the less directional the antenna becomes. Thus, in satellite transmission, even though the dish may be perfectly pointed at the desired satellite, if the beamwidth is wide enough, adjacent satellites will also be illuminated. This is a potential source of interference, and for this reason the ITU (International Telecommunications Union) place strict limits on the power spectral density (also referred to as flux density) of signals arriving at adjacent satellites. One obvious method to reduce the level is to spread the transmitted signal over as wide a bandwidth as possible. In the past, this has sometimes been achieved using Spread Spectrum modulation, but at the expense of demodulator complexity. However, by using BPSK modulation, and low FEC code rates (down to Rate 1/3, for example) the power spectral density may be reduced. Taking Rate 1/2 QPSK as a baseline, moving to Rate 5/16 BPSK Turbo Product Coding gives a reduction in power spectral density of 5 dB. Furthermore, the increased coding gain of this FEC method allows a further reduction in transmitter power. Using Rate 1/2 Viterbi with concatenated Reed-Solomon as a baseline example, Rate 5/16 provides 1.5 - 2.0 dB improvement in coding gain. Putting these two factors together yields an overall reduction in power spectral density of approximately 7 dB. This simultaneously permits a smaller antenna, and reduced transmitter power. The disadvantage is the increased spectral occupancy of the carrier, and it will depend on the particular satellite operator to determine if this poses a severe economic problem. There are significant technical challenges with this approach. When operating at these higher code rates (21/44 and 5/16), the demodulator is forced to operate in a region where the Ebt/No (also referred to as Es/No) is negative - in other words, there is more noise than signal. The demodulator must acquire and track in this environment, and the TPC decoder (which is block based) must acquire and track the frame unique word in the uncorrected error rate, which in the Rate 5/16 case can be as bad as 2x10⁻1 https://www.comtechefdata.com/files/appnotes-pdf/SDM-300L2%20Turbo%20Product%20Code%20FEC.pdf

milstar: NASA’s Optical Communications Program for 2017 and Beyond https://www.nasa.gov/sites/default/files/atoms/files/03_don_cornwell_nasas_optical_comm_program_public_release_june_2017.pdf

milstar: https://ipnpr.jpl.nasa.gov/progress_report/42-130/130H.pdf Fig. 11. The probability of erroneous data bits. The feedback concatenated decoder is im- plemented in software and provides a bit-error rate of 10 × 10−7 at an exceptionally low signal-to-noise ratio of Eb/No = 0.65 dB.

milstar: https://gdmissionsystems.com/products/communications/spaceborne-communications/tracking-telemetry-and-control/small-deep-space-transponder Reliable X-Band and Ka-Band Deep Space Transmission The Small Deep Space Transponder (SDST), developed by General Dynamics and NASA’s Jet Propulsion Laboratory, is a spacecraft terminal for X-Band and Ka-Band telecommunications with the NASA Deep Space Network (DSN). Making extensive use of MMICs, multichip modules, and a new signal processing ASIC, the SDST’s flexible design provides the capability to meet the telecommunication needs of nearly every deep space mission. he SDST has two configurations. The X/X configuration consists of an X-band receiver and an X-band 880F1 exciter. The X/X/Ka configuration consists of an X-band receiver, an X-band 880F1 exciter and an X-band 840F1 exciter. The 840F1 exciter drives an external x4, X-to-Ka-band multiplier mounted to the user’s Ka-band power amplifier, allowing interconnection by coaxial cable rather than waveguide. The SDST is designed for use with our 15 watt X-band Solid State Power Amplifier (SSPA) and other customer supplied X and Ka-band power amplifiers. The 15 watt X-band SSPA is designed to supply telemetry signals that can be connected directly to the SDST to make a complete transmitter/receiver with a single MIL-STD-1553B data interface. Deep-Space Network Compatible Redundant I/O for Cross-Strapping X-Band Receiver, X and Ka-Band Exciters 2.1 dB Typical Noise Figure @25°C -158 dBm Typical Sensitivity @ 25°C Temp Compensated Receiver VCO Low Exciter Spurious, Phase Noise, and Allan Deviation Radio Science Mode (using USO Input) 6 ns Typical Ranging Delay Variation 30 Mbps Max TLM Symbol Rate 0.5 ns Typical Carrier Delay Variation MIL-STD-1553 Interface – Standard and Low Power External Power Converter Synchronization Capability Operates Under Launch Environments Radiation and SEU Resistant Internal Telemetry Modulation Encoder Internal Command Detector with External Baseband Input Mounting in Either of Two Axes Firmware Options: Carrier Tracking Loop Bandwidth Command Detector Subcarrier Frequencies and Data Rates Custom Command/Telemetry Interface Format Custom POR state https://gdmissionsystems.com/-/media/General-Dynamics/Space-and-Intelligence-Systems/PDF/small-deep-space-transponder-datasheet.ashx X-Band Receiver, X and Ka-Band Exciters nn 2.1 dB Typical Noise Figure @25°C nn -158 dBm Typical Sensitivity @ 25°C n TLM Modulation Modes: Subcarrier, BPSK (to 15 Mbps), QPSK (to 30 Mbps) upgradeable to 100 Mbps

milstar: The dependence of the bit error rate on Eb/No for the orthogonal MFSK is shown in Fig. 1. The figure shows that the increase of the ensemble M reduces the required signal-to-noise ratio to ensure the same bit error rate. For example, in transferring from 2-FSK (M=2) to 64-FSK (M=64) with the specified bit error rate Pb=10-5 the gain is approximately 6 dB [1]. In this case the increase of M reduces the difference between the coherent and incoherent detection. If with M=2 the coherent detection as compared to the incoherent one gives 0.8 dB gain, then with M=64 the gain is 0.6 dB. Therefore, for large M in the majority of practical applications it is possible not to use complex coherent algorithms of detection https://www.researchgate.net/publication/326746788_MULTIPLE_FREQUENCY-SHIFT_KEYING_WITH_DIFFERENTIAL_PHASE-SHIFT_KEYING_OF_SUBCARRIERS

milstar: n the other hand, results in [8] and [9] reveal that, with MFSK, the coded modulation (CM) channel capacity is signif- icantly larger than the BICM channel capacity under the addi- tive white Gaussian noise (AWGN) and Rayleigh fading chan- nels. Moreover, the discrepancy between the BICM and the CM channel capacity increases with increasing M . For example, at a code rate of 1/3, the CM channel capacity is superior to the BICM channel capacity by approximately 0.5 dB with 4-FSK under the AWGN and Rayleigh fading channels. This difference increases to approximately 1.9 dB with 64-FSK [8],[9]. These results drive us to analyze the performance of fast FHSS-MA networks with MFSK and M -ary coding rather than binary cod- ing. https://koreascience.kr/article/JAKO201309842140512.pdf

milstar: C. R. Physique 18 (2017) 178–188 Contents lists available at ScienceDirect Comptes Rendus Physique www.sciencedirect.com Energy and radiosciences / Énergie et radiosciences Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization Turbo-FSK, une couche physique pour les réseaux longue portée basse consommation : optimisation et comparaison Yoann Roth a,b,∗, Jean-Baptiste Doré a, Laurent Ros b, Vincent Berg a a CEA, LETI, MINATEC Campus, 38054 Grenoble, France b Univ. Grenoble Alpes, GIPSA-Lab, 38000 Grenoble, Franc expression clearly explains the current trend of LPWA networks towards low data rates: if the value of R is reduced, lower levels of sensitivity are required to guarantee the quality of service, and longer ranges of communication may be provided by the system. Reducing the data rate can be done by reducing the bandwidth B for a constant spectral efficiency, or by reducing the spectral efficiency η for a constant bandwidth B. The first solution leads to narrow-band signaling, the option chosen by the IoT company SigFox [4]. Dealing with narrow-band signals involves some technological issues, such as the necessity to have precise oscillators. The second option, reducing the value of η, is often done by the use of the well-known spreading factor, or repetition factor. Indeed, repeating by a factor λ divides both the values of η and SNRmin by the same factor, thus lowering the sensitivity level (when the bandwidth is fixed). However, neither of these techniques change the energy efficiency, as the required Eb/N0 is intrinsic to the modula- tion used. It is furthermore bounded by the Shannon’s limit of the information theory [5], which defines the maximum transmission rate with arbitrarily low bit-error probability, for a given SNR and bandwidth. A formulation of this limit can be [6] giving the minimum Eb/N0 (i.e. maximum energy efficiency) for a reliable communication as an increasing function of the spectral efficiency, with the ultimate limit Eb/N0 = −1.59 dB when η tends toward 0. As having a system’s performance close to this ultimate limit would imply an optimal use of the energetic resource for a given spectral efficiency, it is clear that decreasing the required Eb/N0 should be a major concern s increased, eventually reaching Shannon’s limit for an infinite value of M [6]. However, since the spectral efficiency be- comes close to 0, this solution is quite unrealistic. It is nonetheless purportedly used by a current commercial off-the-shelf long-range solution, supported by the LoRa Alliance [7], as suggested by the patent [8] held by a company member of the alliance. Another option to reduce both Eb/N0 and η is the use of channel coding [9]. In this area, the use of the turbo prin- ciple [10] has been shown to be particularly efficient, but implies high consumption at the receiver’s side. Even though the transmitter for this scheme has a low complexity, most of the current LPWA solutions rely on other Forward Error Correction (FEC) codes, and a potential improvement can be achieved by introducing more sophisticated receiver algorithms. The use of orthogonal alphabet and coding in the same transmit process combined with a turbo receiver was first pre- sented for the case of the binary Hadamard code in [11]. In [12], we proposed the Turbo-FSK scheme, an adaptation of [11], replacing the binary Hadamard codewords by the non-binary complex codewords of the orthogonal M-ary Frequency-Shift- Keying modulation (M-FSK). This modulation is an interesting choice as its constant envelope property provides a power efficient solution regarding the transmit power amplifier. The use of pure frequency waveforms also leads to robustness through frequency-selective multipath channel. Demodulation can be performed using the Fast-Fourier Transform (FFT), as in Orthogonal-Frequency-Division-Multiplexing (OFDM) receivers [13]. M-FSK is widely used for monitoring application, and off-the-shelf optimized chips are available [14]. Limitations of the Turbo-Hadamard code from [11] have been studied in [15], using the EXtrinsic Information Transfer (EXIT) chart analysis [16] and its extension to multi-dimensional codes [17]. The EXIT analysis is used to observe the exchanges of information inside the decoder, and to predict the “waterfall” region of a turbo process, i.e. the region where the Bit-Error Rate (BER) curve drops significantly. The figure clearly shows the optimum value of the parameters, for both EXIT and BER analysis. The general trend obtained with the EXIT chart is confirmed even when the block size is shortened. Reducing the block size to N = 1,000 bits (125 bytes) induces a performance loss of approximately 1 dB (on average), implying a minimum gap to Shannon’s limit equals to 1.35 dB. For a block size of N = 100, the performance loss compared to the asymptotic pinch-off is 3 dB, with the best set of parameters (128, 4) being 3.42 dB away from Shannon’s limit Y. Roth et al. / C. R. Physique 18 (2017) 178–188 187 Table 2 Parameters used for comparison. PHY-layer 802.15.4k OSSS FSK + TC Turbo-FSK Modulation DBPSK 512-Orthog 128-FSK 128-FSK FEC CC [171 133] Hamming TC [13 15] Turbo-FSK Binary code-rate 1/2 4/6 1/3 – λ 43 9 2 4 η (·10−2 ) 1.163 1.172 0.907 1.170 Fig. 7. (a) BER and (b) PER performance comparison versus Eb /N0, using the parameters given in Table 2. The packet size is set to 1,000 bits. λ = 4, i.e. the best couple of parameters for this size of alphabet. The spectral efficiency is equal to η = 1.17 · 10−2 for these parameters. For each scheme, we can choose a different value of λ in order to equalize the spectral efficiency of the schemes. The selected parameters are summarized in Table 2. Fig. 7 (a) depicts the BER performance versus Eb/N0 for the selected parameters. The OSSS scheme uses the Hamming code, which is less powerful than the convolutional code of the IEEE 802.15.4k standard, but offers better performance when combined with a relatively large size of orthogonal alphabet (512). The gain using the turbo principle is illustrated by the performance of both the FSK + TC and the Turbo-FSK. The scheme FSK + TC reaches a BER of 10−5 for value of Eb/N0 of 2.91 dB, and the Turbo-FSK outperforms all the other scheme, showing a 4.8 dB gain versus the OSSS + Hamming scheme for the same BER. The gain offered by the Turbo-FSK scheme versus the scheme FSK + TC also shows the benefit of jointly optimizing the modulation and the channel coding instead of treating them separately. The Packet Error Rate (PER) versus Eb/N0 is depicted in Fig. 7 (b). For a PER of 10−3, the Turbo-FSK with these param- eters outperforms the scheme OSSS + Hamming code by 5.5 dB. This level of PER is reached for Eb/N0 = 0.12 dB. Using Equation (2), with the spectral efficiency given in Table 2, the equivalent SNR is equal to −19.2 dB, demonstrating the ability of the system to work at low levels of SNR. These two figures show the real benefit of turbo processing on the sensitivity gain. Because all the spectral efficiencies are normalized, the Eb/N0 gain can be interpreted as the sensitivity gain between two schemes, when the same bandwidth is considered (see Equation (3)). The 5.5 dB gain between Turbo-FSK versus the LoRa based scheme for a PER or 10−3 means that the sensitivity level will be lower using our scheme. This can be interpreted as a potential reduction of the transmit power by a factor 3.5 while ensuring the same level of performance, or a distance increase by a factor 1.8 (under the approximation of a free path loss exponent equal to 2). Comparison with other schemes could be considered; the use of a turbo code with a linear modulation also offers a good tradeoff between performance and spectral efficiency. The sensitivity performance improvements are done at the expense of an increase of complexity at the receiver side. As we focus on the complexity at the node level, having a more complex receiver at the base-station is acceptable. However, a recent study showed that the Turbo-FSK physical layer can be implemented on off-the-shelf components [24], demonstrating that the complexity increase can be handled by components with low computation capacity.

milstar: Data Rate If Y-times repetition is programmed, the data rate also must be multiplied by Y. The deviation setting should not be changed. Example: If the user wants to send a 10-kbps signal with deviation ±20 kHz and 4× bit repetition, the resulting data rate programmed must be 40 kbps, but the deviation must still be ±20 kHz. https://www.ti.com/lit/ml/swra566/swra566.pdf?ts=1680026006029&ref_url=https%253A%252F%252Fduckduckgo.com%252F

milstar: Main Job Transmitting data directly to and from Earth Radio Frequency X band (7 to 8 gigahertz) Location Mounted mid-aft portside of Mars 2020 deck ("back") Size Hexagonally shaped, 1 foot (0.3 meters) in diameter Transmission/ Reception Rates 160/500 bits per second or faster to/from the Deep Space Network's 112-foot-diameter (34-meter-diameter) antennas or at 800/3000 bits per second or faster to/from the Deep Space Network's 230-foot-diameter (70 meter-diameter) https://mars.nasa.gov/mars2020/spacecraft/rover/communications/ Tech Specs Main Job Transmitting data directly to and from Earth Radio Frequency X band (7 to 8 gigahertz) Location Mounted mid-aft portside of Mars 2020 deck ("back") Size Hexagonally shaped, 1 foot (0.3 meters) in diameter Transmission/ Reception Rates 160/500 bits per second or faster to/from the Deep Space Network's 112-foot-diameter (34-meter-diameter) antennas or at 800/3000 bits per second or faster to/from the Deep Space Network's 230-foot-diameter (70 meter-diameter)

milstar: https://static1.squarespace.com/static/5db32386f46e32203e649083/t/5efb8fee182451350f4362cc/1593544687949/ANST-081010W0.pdf 23773 Madison St. Torrance CA 90505 Tel: 310.413.7222 e-mail: sales@raytechx.com Millimeter-wave, Technology Note: Raytech Inc. reserves the right to change the information presented without notice. ANST-081010W0 Slotted Antenna Array Features: • High Power Handling • Max Gain Application • 600 MHz Bandwidth • Flat and Low Profile Operating Frequency: 7.5 - 8.1 GHz • Gain: 24.0 dBi • Beamwidth: (E/H): 10 x 10 degrees • Cross Polarization Deviation 60 dB • Polarization: Linear, Vertical Outline: ANST008-OL00 Mechanical Specifications: • Ports: WR-102, UG-1493/U • Size: 10.5” (L) x 9.7” (W) x 1.4” (H) • Weight: 4.1 lbs • Material: Aluminum with Chromate Coating

milstar: https://sylatech.com/wp-content/uploads/2023/02/Slotted-Array-Antenna-January-2018-v1.0-Issued.pdf

milstar: https://anteral.com/datasheets/lens-horn-antenna-wr90-30-dbi-gain.pdf

milstar: Прапорщик Сергей Титаренко обеспечивал бесперебойной связью батальонную тактическую группу российских Вооруженных Сил, когда ее позиции подверглись массированному минометному обстрелу со стороны украинских националистов. О новых подвигах российских военнослужащих в ходе спецоперации по защите Донбасса Минобороны РФ рассказало в четверг, 6 апреля. Командно-штабная машина, которая обеспечивала связь в группе и с вышестоящим штабом, получила повреждения от разорвавшегося рядом минометного снаряда. Подразделение полностью лишилось связи. Прапорщик Титаренко вытащил из подбитой машины раненых товарищей и под непрекращающимся огнем противника развернул станцию спутниковой связи для восстановления оперативной координации действий в бою. В условиях, сопряженных с риском для жизни, пробираясь по открытой местности, Титаренко оперативно развернул и настроил станцию, в результате чего связь в группе была восстановлена. Самоотверженные действия прапорщика Титаренко позволили восстановить управление батальонной тактической группой и обеспечить устойчивую связь с командованием. https://iz.ru/1494221/2023-04-06/praporshchik-titarenko-na-pole-boia-vosstanovil-prervannuiu-sviaz-s-komandovaniem?main_click

milstar: https://oborona.ru/product/zhurnal-nacionalnaya-oborona/resheniya-ao-ntc-ehlins-dlya-distancionnogo-upravleniya-robototekhnicheskimi-kompleksami-44614.shtml

milstar: МО РФ показало запуск дронов с радиостанцией для лучшей связи в зоне СВО 15:10 13.05.2023 Связисты ЗВО показали, как наладить бесперебойную связь в зоне специальной военной операции. https://tvzvezda.ru/news/2023513149-llPv2.html Минобороны России опубликовало кадры боевой работы связистов ЗВО, обеспечивающие надежную связь между пунктами управления, воинскими частями и подразделениями в зоне СВО. Специалисты войск связи отвечают за бесперебойность защищенной спутниковой, радиорелейной, мобильной и радиосвязи, что гарантирует непрерывность и оперативность управления войсками на высоком уровне. Выполнять поставленные задачи приходится в экстремальных условиях, под огнем артиллерии и минометов противника, проявляя мужество, самоотверженность и профессионализм. На кадрах видно, что расчеты станций занимают районы, которые заранее были проверены подразделениями разведки и инженерных войск. Прибыв на новое место, экипажи оперативно производят настройку необходимого оборудования для предоставления различных каналов связи. Одними из основных средств связи являются спутниковые носимые ранцевые станции. Их отличает компактность, небольшой вес, простота в эксплуатации, легкость в настройке. «В ходе проведения СВО выполняем задачи по организации и обеспечению связи командиру и штабу дивизии, а также подчиненным подразделениям. Основные средства – это средства спутниковой связи. Носимая ранцевая станция. Удобная, практичная в эксплуатации. Легкая в настройке. Личный состав легко усваивает и учится применять на практике эту станцию. Предназначена для тактического звена. Зарекомендовала себя с положительной стороны. Связь устойчивая, разборчивая …» - рассказал начальник штаба батальона связи с позывным Волгоград. Для обеспечения устойчивой и бесперебойной связи используются и беспилотники. «Тем самым, увеличивается дальность связи. Это новая разработка», - пояснил командир взвода связи с позывным Алмаз. На кадрах видно, как оператор проверяет техническую готовность к полету. Убедившись что все системы в норме, на квадракоптер устанавливают штатную радиостанцию. Она станет ретранслятором, через который будут связываться боевые подразделения. Специалисты пояснили, что «Азарт» - не только переговорная радиостанция. Это военный аналог современных бытовых смартфонов. Кроме того, с помощью «Азарта» можно пересылать точные координаты целей по шифрованным и при этом скоростным каналам. Ретранслятор в небе увеличивает дальность работы радиостанций на земле. Параллельно с помощью видеокамеры квадрадроптер также может проводить разведку.



полная версия страницы