Форум » Дискуссии » VMF (продолжение) » Ответить

VMF (продолжение)

milstar: 100 лет создателю современного ракетно-ядерного флота России Адмирал Флота Советского Союза Сергей Горшков был своим на кораблях, в штабах и заводских цехах 2010-03-19 / Федор Иванович Новоселов - адмирал, заместитель главнокомандующего ВМФ по кораблестроению и вооружению (1986-1992). Вице-адмирал Сергей Горшков. 1950 г. Фото из книги «Черноморская эскадра» Недавно страна отметила 100-летие адмирала Флота Советского Союза Сергея Георгиевича Горшкова, славного сына Отечества, выдающегося флотоводца, который в течение 30 лет (1956–1985) находился на посту главнокомандующего ВМФ. Он являлся идеологом и организатором строительства флота, под его руководством был построен современный океанский ракетно-ядерный атомный флот, успешно освоивший просторы Мирового океана. Создание такого флота является величайшим подвигом советского народа, так как флот строит вся страна. ПЕРВАЯ ВСТРЕЧА Большая часть моей службы – около 30 лет – прошла в системе заказов по созданию систем вооружения ВМФ, в том числе около 20 лет в центральном аппарате, из них 14 – начальником заказывающего управления по ракетно-артиллерийскому вооружению. Впервые я увидел Сергея Горшкова летом 1957 года при его посещении крейсера «Чкалов», а затем на собрании партийного актива Ленинградской ВМБ, обсуждавшего итоги октябрьского 1957 года Пленума ЦК КПСС. С докладом выступал главком ВМФ, большинство выступавших коммунистов одобряли решения пленума, освободившего Георгия Жукова от должности министра обороны. Немало было критики и в адрес Горшкова, в основном за подражание маршалу Жукову в наказании провинившихся офицеров. Тон и направленность критики задал адмирал Иван Байков, однокашник Сергея Горшкова по училищу. Я присутствовал на многих партийных собраниях военных и гражданских организаций, но такого накала критики и самокритики, накала страстей, как на этом активе, не встречал. Сергей Георгиевич весьма достойно выдержал критику, никаких реплик или оценок выступлений в заключительном слове он не сделал. Ответив на вопросы, сформулировал задачи по выполнению решений пленума. Это произвело впечатление на многих. В конце 60-х годов Сергей Горшков дважды посетил Красноярский машиностроительный завод, на котором проходило освоение производства БРПЛ Р-27 и конструкторская отработка первой межконтинентальной ракеты Р-29. Я, как районный инженер по руководству работой военных представительств на семи предприятиях Сибири, встречал и сопровождал главнокомандующего ВМФ. Он с большим вниманием и заинтересованностью вникал в работу завода, состояние с отработкой и качеством ракет и высказал заинтересованность флота в переводе завода на производство БРПЛ. В мае 1971 года я выступал от ВМФ на Всеармейском совещании руководителей представительств военной приемки (ВПВП) МО. В феврале 1972 года меня вызвали в столицу. Главнокомандующий ВМФ предложил мне должность начальника УРАВ как генерального заказчика по ракетному и артиллерийскому вооружению. В беседе он рассказал, из своего опыта 1955 года, о трудностях начала работы в столице, обратив мое внимание на необходимость установления нормальных отношений с министерствами, чьи предприятия работают по заказам УРАВ, с генеральными и главными конструкторами. В апреле 1972 года состоялось мое назначение на должность начальника УРАВ и началась служба в столице. Исходя из моего многолетнего опыта могу свидетельствовать, что во время нахождения в Москве Сергей Горшков львиную долю времени уделял вопросам строительства флота. При определении перспективы развития флота он всегда опирался на науку, прежде всего на работу ученых НИИ ВМФ и ВМА, знакомясь с ходом их исследований. При рассмотрении научных работ, он всегда ориентировал ученых на поиск нетрадиционных идей в создании систем вооружения и строительстве кораблей. Он был противником копирования зарубежных кораблей и вооружения, считая это путем отсталых, хотя изучению зарубежного опыта придавал немалое значение. Он настойчиво рекомендовал Институтам флота теснее взаимодействовать с учеными Академии наук СССР, подчеркивая, что флот на протяжении своей трехсотлетней истории всегда был тесно связан с Академией наук. Сергей Георгиевич всегда внимательно относился ко всему новому в фундаментальной науке. Он с большим уважением и вниманием относился к выдающимся ученым, которые внесли существенный вклад в строительство современного флота. В первую очередь следует назвать академика Анатолия Александрова, научная и практическая работа которого была тесно связана с флотом еще в довоенные годы. Он был инициатором и научным руководителем создания атомных энергетических установок и проектирования атомных подводных лодок. После избрания его в 1975 году президентом АН СССР Анатолий Петрович продолжил руководство Советом по гидрофизике, организуя исследования Мирового океана в интересах создания систем подводного кораблестроения и наблюдения. Сергей Горшков высоко ценил творческую деятельность генеральных и главных конструкторов кораблей и систем вооружения, избранных в состав АН СССР. Это академики Н.Н. Исанин, С.Н. Ковалев, В.Н. Челомей, В.П. Макеев, Н.А. Семихатов, П.Д. Грушин, Б.П. Жуков, Ю.Б. Харитон, Е.И. Забабахин, А.И. Савин, В.С. Семенихин, А.А. Туполев, С.В. Илюшин, Р.А. Беляков, Г.М. Бериев. Со всеми этими неординарными личностями, как и со многими другими, Горшков великолепно умел вести беседы и решать вопросы, и пользовался огромным авторитетом и уважением в их среде. Думаю, не ошибусь, если скажу, что Сергей Георгиевич был самым авторитетным и уважаемым среди ученых страны военачальником. С МОРЯ – НА ЗАВОД Важное значение в работе Сергей Горшков придавал общению с руководителями министерств ОПК, его многие годы связывали дружеские, деловые отношения с выдающимися руководителями оборонных отраслей промышленности: Б.Е. Бутома и М.В. Егоров (судостроение), Е.П. Славский (атомная ), С.А. Афанасьев (ракетно-космическая), С.А. Зверев и П.В. Финогенов (оборонная), В.В. Бахирев (боеприпасы и твердые топлива), В.Д. Калмыков и П.С. Плешаков (радиотехническая), Э.К. Первышин (средства связи). Встречи и совещания в столице, совместное посещение НИИ и КБ по вопросам кораблестроения и вооружения. Так, только по ракетным делам он с министрами побывал на Урале, Алтае, Таджикистане, в Харькове, Туле, Реутове, Люберцах, Химках и Дубне, не говоря уж о Москве, Ленинграде и центрах кораблестроения. Он с большим уважением и доверием относился к работе проектантов кораблей и конструкторам систем вооружения, всегда внимательно и заинтересованно слушал их выступления, сам активно участвовал в обсуждении, при этом чувствовалось глубокое знание им обсуждаемой проблемы, в том числе и технических вопросов. На заводах он проявлял большой интерес к новинкам технологии, организации производства и системе контроля качества. В этих посещениях предприятий Сергей Горшков проявлял интерес к вопросам развития предприятия, настроениям в коллективе. Он считал, что только благополучное предприятие может создавать высококачественную технику. Главное, что отличало Сергея Георгиевича, это его выступления, у него всегда было что сказать, при этом четко формулировал роль конкретного коллектива, где находился, в строительстве флота. Важным направлением привлечения внимания к проблемам флота являлись выставки-показы новых кораблей и систем вооружения, организованные по инициативе Сергея Горшкова на Северном или Черноморском флотах, с приглашением на них руководителей партии и правительства, министров, генеральных и главных конструкторов, директоров крупных заводов. После ознакомления с кораблями, самолетами, ракетами, торпедами и другими видами ВВТ, на выходе кораблей в море для участников выставки выполнялись боевые упражнения с пусками ракет и артиллерийскими и торпедными стрельбами. Многие участники этих мероприятий становились активными сторонниками создания мощного океанского флота. Участие конструкторов в выставках, на учениях и испытаниях новых систем вооружения позволяли им быстрее проходить процесс оморячивания, что имело принципиальное значение для правильного восприятия ими требований ТТЗ ВМФ и квалифицированно и осознанно их реализовывать при разработке ВВТ. Сергей Георгиевич постоянно интересовался ходом подготовки полигонов флота к испытаниям новых ракетных комплексов и других систем вооружения. Вспоминается посещение его вместе с секретарем ЦК КПСС Дмитрием Устиновым Северного полигона в начале 1976 году. Во время движения по технической территории полигона в районе поселка Нёнокса Устинов поинтересовался местом стартовой позиции для испытаний нового РК Д-9Р. Начальник полигона вице-адмирал Владимир Салов доложил, что сейчас подъезжаем к месту, выбранному по результатам рекогносцировки, и показал торчащую в снегу палку с металлической банкой на конце. Автобус остановился, и секретарь ЦК спросил: «Сергей Георгиевич, а вы успеете построить старт к началу испытаний?» «Вне всякого сомнения», – ответил главком и выразительно посмотрел на начальника Главного инженерного управления генерал-майора В.Е. Путята и на меня. Работы были выполнены в установленные сроки, и полигон обеспечил, как и во всех других случаях, испытания новых комплексов. ШКОЛА ЗАКАЗЧИКОВ Главной опорой главкома в строительстве флота были управления, объявленные в приказе министра обороны генеральными заказчиками по определенной номенклатуре ВВТ флота. Они несли всю полноту ответственности за жизненный цикл этой техники, начиная с задумки облика, создания, организации эксплуатации, снятия с вооружения и утилизации, и были основными организаторами по подготовке и реализации принятых решений по вопросам проектирования кораблей, созданию комплексов вооружения, подготовки полигонов флота к испытаниям и организации их проведения. Заказывающие управления (ЗУ) несли ответственность за техническую подготовку флотов к приему новых видов вооружения и организацию их эксплуатации, за специальную подготовку личного состава кораблей и частей. Для выполнения этих функций заказывающие управления имели в подчинении НИИ, полигоны, военные представительства на предприятиях промышленности, арсеналы и базы хранения вооружения, ремонтные заводы. В специальном отношении им подчинялись соответствующие управления флотов, флагманские специалисты и боевые части (службы) кораблей. Итоговыми оценками деятельности заказывающих управлений являлись создание новых систем вооружения в установленные сроки и высокого качества и успешность выполнения боевых упражнений кораблями флотов. Поэтому Сергей Георгиевич уделял пристальное внимание работе этих управлений, а их руководители были наиболее частыми посетителями его кабинета с докладами. Становлению и укреплению авторитета начальника заказывающего управления имело их обязательное присутствие на встрече ГК ВМФ с генеральными и главными конструкторами, директорами предприятий и руководителями министерств, при этом он всегда спрашивал мнение присутствующего начальника ЗУ по обсуждаемому вопросу и, как правило, поддерживал его. Такая система общения с начальниками заказывающих управлений позволяла главкому быть постоянно в курсе дел по созданию и ходу испытаний систем ВВТ и строительству кораблей, а для подчиненных была великолепным примером и школой решения различных вопросов. Важной школой воспитания и обучения для начальников ЗУ было присутствие и участие в обсуждении вопросов на заседаниях Военного совета ВМФ. Присутствуя на многих заседаниях Военного совета, на некоторых из них я выступал с докладами или в прениях, а при обсуждении итогов зимнего и летнего периода обучения обязательно докладывал о результатах ракетно-артиллерийской подготовки за ВМФ в целом. Это были отличная школа государственного подхода к обсуждаемым вопросам, пример сочетания жесткого спроса за недостатки и упущения с уважением к человеку и четкие указания по дальнейшей работе. Сергей Георгиевич всегда внимательно слушал доклады и выступления, делал замечания или задавал вопросы, но я не помню, чтобы это кого-нибудь обижало. Если кому и доставалось, то за дело. Вспоминаю, как в январе 1976 года я докладывал на заседании Военного совета о неудовлетворительных результатах ракетных пусков в 1975 году и мерах, принимаемых управлением. Главком одобрил предлагаемые меры, но дал весьма жесткую оценку моей деятельности: «Вы не твердо держите в руках порученное дело. Начальник УРАВ отвечает и за качество, и за надежность вооружения, и за обучение личного состава ракетно-артиллерийских боевых частей кораблей, и за организацию стрельб. Требую наводить в службе порядок быстрее и жесткой рукой. Пока мы этого не видим и публично вас предупреждаем. Спрос будет строгим». Такая оценка не могла быть приятной, тем более что управление и вся ракетно-артиллерийская служба работали с большим напряжением. Десятки КБ и НИИ промышленности работали по созданию новых комплексов РАВ. На четырех полигонах и кораблях под руководством государственных комиссий проводились испытания новых и модернизированных комплексов, количество которых иногда доходило одновременно до десяти. На флотах шло освоение новых видов вооружения, в ходе боевой подготовки проводились пуски ракет, число которых иногда доходило до 400 в год, по результатам которых, в определяющей степени, оценивался уровень боевой и политической подготовки большинства кораблей и частей флотов. Офицеры управления принимали непосредственное участие во всех этих процессах. В поездках на флоты офицеры управления оказывали помощь специалистам по подготовке к учениям и сложным стрельбам, проведении и оценке их результатов. Строгую оценку, данную главнокомандующим на Военном совете, в управлении восприняли как должное и как руководство к действию. Управлением, вместе со специалистами РАВ и командованием флотов, были приняты необходимые меры. В последующие 10 лет серьезных провалов в ракетно-артиллерийской подготовке на флотах не было, хотя недостатки и замечания были всегда. Главный конструктор Валентин Мутихин, Сергей Горшков, командир РКР «Слава» Вадим Москаленко. Фото из архива «НВО» ПОД РАКЕТНЫМ ОБСТРЕЛОМ Особое значение имели плановые поездки главнокомандующего на флоты, как правило, два раза в год на Северный и Тихоокеанский и по одному – на Балтийский и Черноморский. Во всех этих поездках участвовали начальники заказывающих управлений. Присутствуя на заслушиваниях командования флота (флотилии), мы получали информацию из первых уст о состоянии дел на флоте и нерешенных вопросах. Мы видели и учились, как правильно надо ставить и решать вопросы по обеспечению боевой готовности сил и средств флота, обустройству гарнизонов и пунктов базирования, поддержанию высокого уровня организации службы и воинской дисциплины. Особое внимание главком обращал на поддержание установленных норм содержания кораблей в постоянной готовности, материальной основой которой является техническая готовность кораблей и систем вооружения, обеспечение флота нормативными запасами ракет, других боеприпасов и материально-технических средств, за которые отвечали центральные управления наравне с командованием флотов. После заслушивания командования флота начальники заказывающих управлений работали в специальных управлениях, на кораблях и частях. Главными вопросами для них были оценка работы по освоению новых кораблей и комплексов вооружения, проверка технической готовности кораблей, состояние системы хранения оружия на базах и вопросы пожаро- и взрывобезопасности на кораблях и базах. Такая практика позволяла ЗУ, отвечающим за весь жизненный цикл вооружения, учитывать флотский опыт в разработке новых систем вооружения. Результаты своей работы начальники управлений докладывали в штаб и учитывали при подведении итогов. По важным и срочным вопросам начальники управлений докладывали лично главкому. Боевые упражнения в море выполнялись в условиях, приближенных к боевым. Корабли находились в боевых порядках (ордерах), обеспечивая все виды обороны, оружие кораблей в готовности к боевому использованию. Пуски БР проводились по команде с ЦКП ВМФ при нахождения ПЛАРБ в условиях боевого патрулирования. Пуски противокорабельных ракет проводились в условиях разведывательно-ударного комплекса, с использованием данных о целях-мишенях от космической или авиационной разведывательных систем. Наиболее сложной была организация отработки ПРО-ПВО соединения кораблей, при которой налет осуществляли противокорабельные крылатые ракеты, доработанные в ракеты-мишени (РМ), запускаемые с ракетных катеров и подводных лодок в штатном режиме. При подготовке РМ на них отключался контур управления от головки самонаведения, вместо боевой части устанавливали весовой имитатор. В целях соблюдения мер безопасности РМ наводились из расчета прохождения их траектории с некоторым упреждением относительно ордера. При угрозе нападения с воздуха корабли соединения переводились в режим полной боевой готовности, боевое распоряжение по отражению воздушных целей с использованием зенитных огневых средств выдавалось только тем кораблям, которые проверялись. Другие корабли ордера должны были использовать свои огневые средства только по РМ, идущей непосредственно на «свой» корабль. Это положение было записано в руководящих документах, что обеспечивало безопасность всех кораблей при отражении воздушного налета. В ходе выполнения боевых упражнений оценивались уровень подготовки личного состава и надежность работы материальной части кораблей. В случаях неуспешных пусков ракет, других недостатков на учении Горшков никогда не проявлял элементов нервозности, давал четкие указания о проведении после учения расследования причин. Летом 1974 года во время оперативных сборов командного состава флотов и центральных управлений под руководством главкома на Северном флоте эскадра надводных кораблей в море должна была отразить удар ракет. Все участники сборов находились на крейсере «Мурманск». Погода была благоприятная, светило солнце, море спокойное. Ракетный удар наносила бригада ракетных катеров, запуская три РМ П-15 с дальности около 40 км. В назначенное время катера пустили РМ, подход которых к эскадре на высоте 200–300 м и темпом 7–10 секунд был хорошо виден визуально. Но произошло невероятное – ни один корабль эскадры не обстрелял РМ из-за того, что РМ не были обнаружены, о чем и доложил командир эскадры. Не знаю, какой разговор состоялся у главкома с командующим Северным флотом, но вскоре я, как главный ракетчик и начальник УРАВ ВМФ, был вызван во флагманскую рубку, где находился нахмуренный и суровый СГ (как мы его называли между собой) в одиночестве. Видно было, что он тяжело переживал произошедшее, и я не ожидал для себя ничего хорошего. Но главком, сдерживаясь, довольно спокойно сказал: «Да-а. Такого еще не бывало у нас. Вызовите специалистов, кого необходимо, останьтесь на флоте после сборов и разберитесь в причинах случившегося досконально. И примите меры». Я был удивлен его выдержкой и еще раз убедился в силе характера. Еще один случай, показывающий выдержку и спокойствие Сергея Георгиевича в сложной ситуации. На одном из учений Северного флота корабли эскадры отражали удар РМ, запущенных с АПЛ и РКАБ. Штаб руководства находился на тяжелом атомном ракетном крейсере «Киров» и получал донесения о поражении двух РМ на основе ракеты П-6. И вдруг из-за низких облаков вылетает горящая РМ П-6 (ее подбил стреляющий корабль) и падает впереди примерно в 200 метрах по курсу крейсера. Многие из нас, находящихся на ходовом мостике, так и ахнули, а главком взглянул в нашу сторону и спокойно сказал: «Не паникуйте!» И поручил мне разобраться, почему зенитчики не обстреляли эту РМ, практически идущую на крейсер. Все было сказано весомо и спокойно. После разбора этого случая с командирами кораблей и соединений на Северном флоте была дана информация на другие флоты вместе с дополнительными указаниями о том, что каждый корабль в ордере должен быть в готовности и поразить воздушную цель, идущую на корабль. К сожалению, невыполнение этих требований привело в аналогичной ситуации к гибели МРК «Муссон» на Тихоокеанском флоте в 1987 году, когда в него попала подбитая РМ-15 и он затонул. Приведу еще один пример, характеризующий Сергея Георгиевича. На учении по высадке десанта на ЧФ один из катеров на воздушной подушке не мог с ходу выйти на побережье и сделал это только на третьем заходе. Командование флота и все, кто находился на смотровой трибуне, волновались и переживали за неудачу и возможные неприятности для командира катера. Главком спокойно направился к катеру, и все, находящиеся на трибуне, последовали за ним. Мы видели бледное лицо командира катера, когда он докладывал главкому. Сергей Георгиевич спокойно выслушал доклад, поздоровался с командиром за руку и начал разговор о боевых и мореходных качествах корабля, какие недостатки он имеет. Командир, старший лейтенант, в начале беседы волновался, что вполне естественно, он впервые разговаривал с военачальником такого высокого ранга да еще в столь сложной ситуации, а затем успокоился и уверенно отвечал на все вопросы. Горшков поблагодарил его и пожелал успехов в службе. Надо было видеть просиявшее лицо командира катера и с какой лихостью он приподнял свой катер, развернул его на месте и ушел в море. Думаю, что для этого офицера беседа с главкомом будет памятной на всю жизнь, а для присутствующих – поучительным примером отношения адмирала к молодому офицеру. Последний мой разговор с Сергеем Георгиевичем состоялся по телефону в канун Дня Победы 1988 года, а вскоре его не стало. Это была огромная потеря для флота, для страны.

Ответов - 202, стр: 1 2 3 4 5 6 7 8 9 10 11 All

milstar: подлодка 20.5*2.3*1.8 m подводное водоизмещение 43.6 t при 6 узлах мощность двигателя 35 l.s /approx 26 kwt потери в механическом приводе выше чем в чисто электрическом ======================== АНПА подобных размеров с ракетой искандер с ядерным боевым блоком 8 То́нн -1.2 -1.6 mwh Li ion LiS 1.6 mwh / 20 kwt (потери в электрическом приводе ниже чем в механическом) 80 часов * 6 knots / 11km = 880 km необходимо 1000+ морских миль ======================= вероятно гибрид Воздухонезависимые энергетические установки (ВНЭУ) FCM34 34 kwt 0.48*0.48*1.45 metr ,650 kg https://www.industry.siemens.com/verticals/global/de/marine/marineschiffe/energieverteilung/Documents/sinavy-pem-fuel-cell-en.pdf FCM120 120kwt 0.5*0.51*1.36 metr ,900 kg

milstar: uel cells have no moving parts and combustion and therefore they are much silent than many different technologies. This characteristic allows to use fuel cells in submarines. German SSK submarines Type 212 and Type 214 have AIP containing nine and two PEMFC stacks installed respectively. The diagram below illustrates, most conversation takes place around a noise level of 60 dBa, which is approximately the noise level measured at 1 meter for all fuel cell units between 1-250 kW regardless of application. http://www.bakstengineering.com/dfatr-pemfc-the-probable-aip-structure-of-submarine-smx-ocean-concept-part-1-2/

milstar: Usually fuel cells is integrated with source of fuel cell’s fuel and oxygen. German SSK submarines Type 212 and Type 214 storage hydrogen and oxygen onboard. Hydrogen is stored in containers with metal hydrides and oxygen – in LOX vessels. Such system guaranties very low level of noise. Reformers application for production of hydrogen increase level of noise. Integrated into a system together with fuel cell, a combustion chamber, a boiler, fuel and oxygen pumps and/or fans that are typically needed, which are usually sources of noise on submarine AIP.


milstar: Stack Specification Based on Application Requirements Design of a Stack for Submarine AIP Applications as an Example Stack design appropriate for submarine AIP requirements and operating conditions: · Power density (kW/l) – target > 2kW/l · Specific power (kW/kg) – target > 2kW/kg · Nominal load (typical): 800 kW · Area specific power density: 1W/cm² · Single cell voltage target: 670mV · Stack design · 300 cm² active area · 300 cells Challenge: Reduction of cell pitch.

milstar: STANDARD MODEL OF SUBMARINE HULL http://www.bakstengineering.com/smx-ocean-submarine-concept-aip-system-performance-aip-power-calculation/

milstar: http://www.bakstengineering.com/chinese-air-submarines-overview-2014/

milstar: http://www.bakstengineering.com/%ef%bf%bcdissolved-oxygen-extraction-seawater/ LOX Storage Systems Drawbacks Items LOX Storage Systems Drawbacks 1. Amount of LOX on sub board defines submerged endurance of submarine. 2. LOX tanks have large dimensions and weight. 3. AIP submarine can be fueled in special ports only. These ports has to be fitted with LOX storage and special cryogenic fueling system. 4. LOX is the dangerous cryogenic liquid (boiling point is −182.96°C at 1.0 atm). 5. LOX is in tanks under high pressure from 20 to 60 bars (MESMA). 6. LOX tanks have to be super‐insulated and have anti‐splash and shock‐proof complicated structure. 7. LOX consumption demands of longitudinal balancing of a submarine.

milstar: Cryogenic LIQUID OXYGEN (LOX) Storage Storage of Oxygen as Cryogenic Liquid LOX Tanks Calculation A certain commercial 29.6 ton tank has length 7400 mm and outer diameter 2600 mm (external volume 39.2 m3). Tare weight 13.5 ton and holds 18500 liters of LOX whose density at 20 bar(a) will be about ~0.87 gram/cm3. In this case the tank holds 18500*0.87=16095 ton of oxygen. The storage factors (mass and volumetric) are: SFm=29.6/18.5*0.87=1.84kg(tank)/kg(O2) SFv=39.2/18.5*0.87=2.43liter(tank)/kg(O2) For 1 Kg of oxygen you need either 1.82 kg of tankage or 2.43 liters. In fact for a military purpose the tank has to contain a bit more than this. For 1 Kg of oxygen it is required 2.0 kg of tank‐mass or 2.8 liters of volume.

milstar: LOX specific consumption Kg/kWh 0.4 0.4 0.95 1.14 http://www.bakstengineering.com/%ef%bf%bcdissolved-oxygen-extraction-seawater/

milstar: https://yandex.ru/search/?text=jadernij%20reaktor%2030%20kwt%20&lr=178 10 kwt nuclear reactor The space rated 10 kWe Kilopower for Mars is expected to mass 226 kg and contain 43.7 kg of U235. https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-21904

milstar: Помимо урана-235 перспективен в качестве топлива реакторов космического назначения диоксид плутония-238, благодаря своему очень высокому удельному энерговыделению. В этом случае относительно низкий кпд термоэмиссионного реактора прямого преобразования компенсируется активным энерговыделением плутония-238. Испытаны два термоэмиссионных реактора-преобразователя на промежуточных нейтронах (без замедлителя) - «Топаз-1» и «Топаз-2» электрической мощностью 5 и 10 квт соответственно. В установке «Топаз» прямое (безмашинное) преобразование энергии осуществляется во встроенных в активную зону малогабаритного теплового реактора электрогенерирующих каналов. Установка «Топаз-1» снабжена тепловым реактором-преобразователем и жидкометаллическим теплоносителем (натрий-калий или литий). Принцип прямого преобразования тепловой энергии в электрическую заключается в нагреве в вакууме катода до высокой температуры при поддержании анода относительно холодным, при этом с поверхности катода «испаряются» (эмиттируют) электроны, которые, пролетев межэлектродный зазор, «конденсируются» на аноде, и при замкнутой наружной цепи по ней идёт электрический ток. Основное преимущество такой установки по сравнению с электромашинными генераторами — отсутствие движущихся частей. Реализация концепции реактора-преобразователя на быстрых нейтронах с литиевым охлаждением в будущем возможно позволяет решить задачу создания установки электрической мощностью 500-1000 кВт и более.

milstar: На основе ЯЭУ «БЭС» и «Топаз» подготовлен ряд проектов установок с улучшенными характеристиками. Подготовлены технические предложения по термоэлектрической ЯЭУ «Заря-1» для космического аппарата оптико-электронной разведки. ЯЭУ «Заря-1» отличается от «БЭС» уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов). В 1978 создана ЯЭУ «Заря-2» электрической мощностью 24 кВт и ресурсом 10000 часов, а потом и космическая ядерная энергодвигательная установка «Заря-3» электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась для создания импульсов тяги коррекции орбиты спутников и энергообеспечения специальной аппаратуры.

milstar: Табл.6 Краткая характеристика ЯЭУ «Топаз 1» Объем активной зоны 22 л. 12 кг U235 Длина 7м Максимальный диаметр 1,3 м Масса около 1,2т Мощность 6 Квт Напряжение постояного тока 32В http://lib.knigi-x.ru/23meditsina/885232-1-1-inbekman-yadernaya-industriya-kurs-lekciy-lekciya-izotopnie-generatori-tepla-elektrichestva-sveta-soderzhanie-izoto.php

milstar: http://youinf.ru/kalina-besshumnaya-rossijskaya-npl-budushhego/ НПЛ Калина — органичный синтез классических решений и революционных ноу-хау. Помимо ВНЭУ на ней будет стоять привычный дизель-генератор и аккумуляторные батареи. То есть, Калина может ходить на дизеле, на аккумуляторах и на энергии, полученной от ВНЭУ. Процесс выработки тока идет совершенно бесшумно, что значительно повышает скрытность подводного хода субмарины. Также возрастает длительность пребывания под водой (≥ 3 недель). Энергетическая мощность нашей установки — 400 кВт. Лучшие зарубежные аналоги выдают не более 180 кВт. Других данных о ТТХ Калина пока нет. Они появятся после начала работ по ОКР. Однако, оценивая характеристики существующих российских и западных НПЛ, можно сделать некоторые предположения. Ударное ракетное и противокорабельное Установки вертикального пуска для крылатых ракет Калибр или Оникс: ≥ 10

milstar: Принципиальная схема V-образного «стирлинга»: 1 — рабочий цилиндр; 2 — рабочий поршень; 3 — подогреватель; 4 — регенератор; 5 — теплоизолирующая муфта; 6 — охладитель; 7 — компрессионный цилиндр. http://wiki.zr.ru/%D0%94%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C_%D0%A1%D1%82%D0%B8%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%B0 Но почему же двигатель с такими очевидными достоинствами до сих пор не нашел практического применения? Причина проста — у него немало еще неустраненных недостатков. Главнейшие среди них — большая сложность в управлении и регулировке. Существуют и другие «рифы», которые не так просто обойти и конструкторам и производственникам.— в частности, поршням нужны очень эффективные уплотнения, которые должны выдерживать высокое давление (до 200 кГ/см2) и препятствовать попаданию масла в рабочую полость. Во всяком случае, 25-летняя работа фирмы «Филлипс» по доводке своего двигателя пока не смогла сделать его пригодным для массового применения на автомобилях. Немаловажное значение имеет характерная особенность «стирлинга» — необходимость отводить с охлаждающей водой большое количество тепла. В двигателях внутреннего сгорания значительная часть тепла выбрасывается в атмосферу вместе с отработавшими газами. В «стерлинге» же в выхлоп уходит только 9 процентов тепла, получаемого при сгорании топлива. Если в бензиновом двигателе внутреннего сгорания с охлаждающей водой отводится от 20 до 25 процентов тепла, то в «стирлинге» — до 50 процентов. Это значит, что автомобиль с таким двигателем должен иметь радиатор примерно в 2—2.5 раза больше, чем у аналогичного бензинового мотора. Недостатком «стирлинга» является и его высокий удельный вес по сравнению с распространенным ДВС. Еще довольно существенный минус — трудность повышения быстроходности: уже при 3600 об/мин значительно возрастают гидравлические потери и ухудшается теплообмен. И наконец. «стирлинг» уступает обычному двигателю внутреннего сгорания в приемистости. Работы по созданию и доводке автомобильных «стирлингов», в том числе для легковых машин, продолжаются. Можно считать, что в настоящее время принципиальные вопросы решены. Однако еще много дел по доводке. Применением легких сплавов можно понизить удельный вес двигателя, но он все равно будет выше. чем у мотора внутреннего сгорания, из-за более высокого давления рабочего газа. Вероятно, двигатель внешнего сгорания найдет применение в первую очередь на грузовых автомобилях, особенно военных — благодаря своей нетребовательности к

milstar: В дальнейшем работы по одной из энергоустановок – ЭУ «Кристалл-20» были продолжены. Установка оснащена низкотемпературными ТЭ с жидким щелочным электролитом, газобаллонными системами хранения водорода и кислорода давлением 40 МПа. Мощность ЭУ - 130 кВт Работы были завершены в полном объеме в 1991 году. ЭУ отработана в стендовых условиях и сдана Госкомиссии. Продолжением работ по корабельным энергоустановкам стала разработка ЭУ с низкотемпературными ТЭ со щелочным матричным электролитом, интерметаллидной системой хранения водорода и криогенной системой хранения кислорода. Мощность ЭУ «Кристалл-27» - 300 кВт. http://www.niiset.ru/index.php/eu-dlya-morskikh-ob-ektov

milstar: 2 июня филиал Крыловского государственного научного центра «ЦНИИ СЭТ» посетил главнокомандующий ВМФ России Виктор Викторович Чирков. Высокого гостя принимал генеральный директор Крыловского центра Владимир Семёнович Никитин, исполнительный директор Михаил Александрович Загородников и директор филиала «ЦНИИ СЭТ» Джавдат Анвярович Хайров. Формат мероприятия предполагал осмотр производственных и испытательных мощностей филиала «ЦНИИ СЭТ» и опытных образцов, созданных Крыловским центром. Главнокомандующему продемонстрировали передовые достижения в области водородной энергетики, главные из которых — батареи топливных элементов для энергоустановок киловаттного и мегаваттного классов, а так же конвертор, позволяющий извлекать водород из различных видов углеводородного топлива. В ходе посещения Виктору Викторовичу показали самое передовое в России опытное производство, позволяющее создавать топливные элементы и батареи на их основе, а также современную научно-экспериментальную базу, без которой было бы немыслимо создание инновационных водородно-энергетических технологий. В самое ближайшее время такими новаторскими энергоустановками можно будет оснащать объекты морской техники и береговой инфраструктуры. Не осталось без внимания и электротехническое направление филиала «ЦНИИ СЭТ». Главнокомандующий посетил отраслевой электротехнический стенд филиала, позволяющий осуществлять испытания судовой электротехники в масштабах всей судостроительной отрасли. На стенде В. В. Чиркову показали новейшие высоковольтные электрораспределительные устройства и модули преобразователей частоты, создаваемые для отечественных атомных ледоколов. Не был обойдён стороной и вопрос импортозамещения. Следует отметить, что руководство ФГУП «Крыловский государственный научный центр» и Главнокомандующий ВМФ озвучили единую позицию в данном вопросе, суть которой заключается в необходимости создания отечественной элементной базы. http://www.niiset.ru/index.php/novosti

milstar: Для скрытного движения на глубине подлодки «Тип 212А» могут использовать свои энергоустановки в воздухонезависимом режиме. В таком случае в качестве источника энергии используются кислородно-водородные топливные элементы на основе полимерного электролита. На головной НАПЛ для Германии (U31) стояла батарея из 9 таких агрегатов мощностью до 40 кВт каждый, разработанных компаниями HDW и Siemens. На следующих субмаринах применяются два 120-киловаттных элемента от тех же компаний. Для работы топливных элементов требуется подача водорода и кислорода. Объемные баллоны для хранения этого «топлива» размещены внутри легкого корпуса. Кислородные баллоны находятся на верхней поверхности прочного корпуса, водородные – на нижней. новые НАПЛ способны погружаться в акваториях глубиной не менее 17 м. Общая длина субмарин «212А» в базовой версии проекта – 56,08 м, ширина – 7 м, нормальная осадка – 6 м. В надводном положении водоизмещение составляет 1580 т, в погруженном – 1990 т. Подлодки «Тип 212А» имеют двухкорпусную конструкцию. Прочный корпус выполняется из маломагнитных стальных сплавов, легкий – с широким использованием армированного стеклопластика. Большой интерес представляет конструкция прочного корпуса. Он состоит из двух цилиндрических агрегатов, соединенных отсеком в форме усеченной пирамиды. Внутри носового цилиндра большего диаметра располагается носовой отсек с торпедными аппаратами и все обитаемые помещения. Кормовая часть корпуса и «переходник» отданы под размещение различных агрегатов энергетической установки. Кроме того, за пределами кормовой части прочного корпуса размещаются газовые баллоны для хранения кислорода и водорода. С целью увеличения времени, в течение которого подлодка может находиться под водой, в проекте «Тип 212А» была применена достаточно сложная, но весьма интересная комбинированная неатомная энергетическая установка. При движении на поверхности или на малых глубинах источником энергии должен служить дизельный двигатель MTU 16V-396. Он связан с генератором, подающим электроэнергию на свинцово-кислотные батареи и электрический двигатель Siemens Permasyn мощностью 1700 л.с. Последний приводит в движение гребной винт с семью саблевидными лопастями. https://topwar.ru/70209-neatomnye-podlodki-proektov-tip-212a-i-tip-214.html

milstar: https://vpk.name/news/140683_sovremennyie_otechestvennyie_neatomnyie_podvodnyie_lodki.html?new Данная задача была блестяще решена разработчиком — ЦКБ «Рубин» и Главным конструктором 877 проекта Ю.Н. Кормилицыным. Другое решение, во многом определило облик всего проекта, — использование ГАК МГК-400 «Рубикон» с крупногабаритной носовой антенной шумопеленгования. Можно сказать что НАПЛ проектировалась «вокруг» ГАК и его основной антенны. Для аналогового комплекса «Рубикон» имел высокий потенциал обнаружения, был выполнен на очень хорошем для начала 70х годов техническом уровне, и обеспечивал в 80х годах значительное упреждение в обнаружении ПЛ «оппонентов» нашей НАПЛ проекта 877. Однако была и «оборотная сторона медали». Следует отметить, что наряду с ГАК «Рубикон» в конце 60х годов проводилась разработка и других ГАК, в т.ч. имевших развитые бортовые антенны обнаружения. Однако для серийного производства был выбран именно «Рубикон», разрабатывавшийся как унифицированный ГАК для НАПЛ и атомных ПЛ ряда проектов (670М, 667БДР, 675М, и др.). С позиции сегодняшнего дня такая унификация была ошибкой. Главной причиной отказа от применения развитых бортовых антенн для большинства отечественных атомных ПЛ стал высокий уровень помех, — проблема которую удалось в значительной степени разрешить только на 3 поколении атомных ПЛ. Поэтому главным направлением развития антенн ГАК ПЛ у нас стала реализация максимально крупной носовой антенны шумопеленгования (имевшей наименьший уровень помех), в связи с этим бортовые и буксируемые антенны (игравшую очень важную роль на западных ПЛ) у нас практически не применялись.

milstar: В последнее время получил распространение способ обнаружения атомных подводных лодок (АПЛ) по тепловому следу - разновидность инфракрасного метода, нацеленная на их обнаружение, потому, что оставляемый лодкой тепловой след много больше по размерам, чем сама лодка, и значит обнаруживается легче. В качестве охладителя внешнего контура реактора АПЛ используют забортную воду. После сброса обратно за борт вода оказывается теплее окружающей. (Тепловой след подводной лодки - протяженная область морской поверхности с температурой, отличной от фоновой, возникающая при движении подводной лодки за счет выноса более холодных (или более теплых) масс воды под воздействием корпуса и винтов. Является демаскирующим признаком подводной лодки, по которому она может быть обнаружена аппаратурой тепловой разведки, установленной на кораблях и летательных аппаратах. См EdwART. Толковый Военно-морской Словарь, 2010 http://dic.academic.ru/dic.nsf/sea/). Наиболее близким к заявляемому по технической сущности является известный из RU 2507108 [4] способ маскировки подводной лодки при использовании устройств снижения сопротивления трения корпуса о воду за счет образования перед носовой частью корпуса движущегося аппарата и вокруг него газоводной среды. В качестве рабочего газа используется перегретый водяной пар. Выходящие из отверстий струи пара образуют по курсу движения судна облако взвешенных в забортной воде пузырьков, снижая плотность воды. После прохождения лодки пар охлаждается и, конденсируясь, смешивается с забортной водой, не выходя на поверхность. Однако использование перегретого пара еще более повысит температуру воду в следе и будет являться демаскирующим фактором. Заявляемый способ направлен на снижение различимости следа судна, вызванного изменением температуры воды в нем. Указанный результат достигается тем, что маскировку осуществляют путем изменения плотности воды в следе аппарата за счет повышения ее солености. Указанный результат достигается также тем, что изменение плотности воды в следе осуществляют путем охлаждения силовой установки более соленой водой, чем забортная, и сброса ее в след. Известно, что нагретая вода имеет более низкую плотность, чем холодная, и поэтому поднимается к поверхности и становится различима с помощью ИК-детекторов. Изменение плотности воды в сторону увеличения в следе приводит к тому, что она уже не поднимается к поверхности, а (при соответствующем повышении концентрации) опускается. А поскольку слои воды над подводным аппаратом поглощают ИК-излучение (прозрачность морской воды не велика и составляет, в лучшем случае, несколько десятков метров), то след становится неразличим ИК-детекторами. Наиболее целесообразным представляется осуществлять изменение плотности воды в следе путем охлаждения силовой установки более соленой водой, чем забортная и сброса ее в след. А получение более соленой воды на АПЛ не представляет проблем, поскольку некоторое количество забортной воды опресняется для нужд лодки с получением более соленых, чем забортная вода растворов. http://www.findpatent.ru/patent/256/2564935.html



полная версия страницы