Форум » Дискуссии » Operazionnie ysiliteli ,ZAP/AZP & (продолжение) » Ответить

Operazionnie ysiliteli ,ZAP/AZP & (продолжение)

milstar: 1941: First (vacuum tube) op-amp An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. ###################################################### It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op-amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. ######################################################################### This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that ####################################################################### would not have been possible otherwise.[3] ########################### http://en.wikipedia.org/wiki/Operational_amplifier

Ответов - 301, стр: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 All

milstar: PLARB neuschaja ot 3 kgz do 60 kgz , skorost 50 bit/sek (polosa 50 herz ) Milstar/AEHF rezim naiboschej boewoj ystojchiwsoti 75 bit/sec (polosa 50-100 herz) 24 bit ADC s 2.5-4 msps na chastotax do 500 kgz ( SDR dlja PLARB ili 3 IF dlja sputn/tropo) AD i TI s SFDR do 120 db i SNR 112 db http://www.analog.com/static/imported-files/data_sheets/AD7760.pdf http://focus.ti.com/pr/docs/preldetail.tsp?sectionId=594&prelId=sc09037

milstar: naschel -Rossijskij AZP ,bolee menee prilichnij 2 kanala po 14 bit 20 msps na 140 mgz ,SFDR -90 db Области применения: Микросхема 9008ВГ1Я предназначена для построения многоканальных систем ввода аналоговых сигналов/изображений. Практическое применение возможно в таких областях, как: § системы ввода изображения, в том числе системы тепловидения; § радиосвязь; § радиолокационные системы; § гидроакустические системы; § измерительная техника; § системы сбора данных; § системы управления; § системы промышленного контроля; § и в других устройствах, позволяющих принимать и обрабатывать отсчеты АЦП в реальном времени. 9008ВГ1Я может быть использов http://multicore.ru/index.php?id=678 http://www.multicore.ru/mc/data_sheets/9008VG1YA_product%20brief_300709.pdf 9008ВГ1Я может быть использован в качестве обычного двухканального АЦП, а также замены AD9225, AD9235, AD9237, AD9238, AD9240, ADS850 (Analog Devices), LTC2246, LTC2226 (Linear Technology). Возможность объединения микросхем в группы для совместной работы на одной выходной шине данных - до 8 микросхем в составе двух групп; Потребление не более 350 мВт; Питание: цифровое: 2.5В ядро, 3.3В периферия; аналоговое: 3.0В; допустимое изменение напряжения +- 5%; Диапазон рабочих температур от минус 60 до плюс 85 °C; Корпус BGA-192, 17х17 мм, шаг 1 мм. ---------------------------------------------- prilichno ,sudja po partneram eto rossijkij AZP iz lutschix http://multicore.ru/index.php?id=39 Концерн ПВО "Алмаз-Антей" Адрес: 121471, г. Москва, ул. Верейская, 41 Телефон: (495) 780 54 00 Факс: (495) 780 54 26 e-mail: antey@almaz-antey.ru URL: http://www.almaz-antey.ru ОАО "Концерн Радиостроения "ВЕГА" Адрес:121170 Москва, Кутузовский проспект, 34 Телефон: (495) 249-07-04 факс: (495) 933-15-63, 148-79-96 e-mail: mail@vega.su URL: http://www.vega.su ФГУП "НПО Машиностроение" Адрес: 143966, Московская область, г. Реутов, ул. Гагарина, д.33 Телефон: +7 (495) 508-87-33 Факс: +7 (495) 302 2001 e-mail: npomash@npomash.ru URL: http://www.npomash.ru ОАО "МНИИ "АГАТ" Адрес: 140182, Россия, г. Жуковский - 2 Московской обл., ул. Туполева 2а Телефон: (495)556-5087, 556-8110 Факс: (495)742-3587 e-mail: siagat@asvt.ru URL: www.agat.rosprom.org ФГУП "НПО "АГАТ" Адрес: 105275 Москва, шоссе Энтузиастов, д.29/53 Телефон: (495) 273-4063 Факс: (495) 273-4130 e-mail: agat@grand-prix.ru

milstar: sudja po anonsu 15 marta 2010 -eto iz novix Отечественные 14-разрядные АЦП с частотой оцифровки 20 МГц В ГУП НПЦ «ЭЛВИС» разработаны микросхемы двухканального аналого-цифрового контроллера ввода сигналов 9008ВГ1Я (макетные образцы имеют маркировку 2008ВГ1Я). Микросхемы выполнены в виде многокристального модуля и содержат два кристалла 14-разрядных АЦП конвейерного типа с частотой оцифровки до 20 МГц и цифровой контроллер. Кристаллы изготовлены по 0,25-мкм технологии и размещены в корпусе BGA-192 размером 17x17 мм. Диапазон рабочих температур микросхем — от –60 до +85 oC. 9008ВГ1Я предназначены для построения многоканальных систем ввода аналоговых сигналов и могут быть использованы в качестве замены AD9225, AD9240, ADS850 (Analog Devices) и LTC2246, LTC2226 (Linear Technology). http://www.kit-e.ru/news/15_03_2010_1.php


milstar: Clearspeed CSX700 96 gigaflop double precision floating point peak ,0.09 micron FFT processor dlja radar application http://www.clearspeed.com/products/documents/CSX700_Datasheet_Rev1D.pdf bistree chem samij bistrij DSP 2010 goda 7.5 gigaflop http://focus.ti.com/docs/prod/folders/print/tms320c6a8168.html http://focus.ti.com/lit/ds/symlink/tms320c6a8168.pdf

milstar: Sandia News Releases September 24, 2009 Sandia receives DoD ‘trusted foundry’ accreditation ALBUQUERQUE, N.M. —Sandia National Laboratories’ silicon fabrication facility in Albuquerque, N.M., has been accredited by the Department of Defense (DoD) to provide “trusted foundry” services for both unclassified and classified integrated circuits. The foundry accreditation represents an increase in scope to Sandia’s already-existing accreditation for design services. The accreditation program is part of DoD’s strategy to ensure that electronic components used in U.S. military and national security applications are trustworthy. Certification is necessary because the increasing offshore migration of all sectors of the microelectronics industry comes at a time of increasing demand for high-performance, application-specific integrated circuits (ASICs) from U.S. military and national security agencies. Sandia’s Category 1A status, which requires the most stringent protection measures, was awarded through the Trusted IC Supplier Accreditation Program of the DoD’s Defense MicroElectronics Activity (DMEA). The trusted foundry accreditation is for Sandia’s strategically radiation-hardened, 3.3-volt, 0.35-micrometer, SOI (Silicon-on-Insulator) CMOS ----------------------------------------------------------------------------------------------------------------------------------------------------------------- (a widely used type of semiconductor) process which produces custom low-volume, high reliability ASICs. Sandia’s silicon fab is optimized for radiation-hardened, analog and mixed-signal microelectronics, custom digital ASICs and discrete devices. Sandia uses 0.35-micrometer geometry to optimize performance for analog circuits resulting in better device matching, higher supply voltages and broader signal dynamic range than smaller geometry devices. Properly designed and fabricated, larger devices are more likely to continue to perform in extended operating environments of temperature fluctuations, shock and radiation. In support of its primary mission as steward of the U.S. nuclear stockpile, Sandia has developed and delivered microelectronic products for nearly three decades. This expertise has also been applied to other national security needs. These include ensuring the nonproliferation of nuclear weapons and materials, reducing the threat from chemical and biological weapons, and providing advanced custom designs for other agencies involved in national defense. Sandia’s ASIC development team provides custom microelectronic products and engineering services that fulfill the needs of a diverse set of customers. Sandia focuses on high-reliability custom solutions for high-consequence applications. An efficient and disciplined ISO 9001 certified process enhances chances for silicon solutions successful on a first pass-through. Sandia offers a total supply-chain solution for radiation-hardened integrated circuits and microsystems by combining trusted ASIC design and fabrication with other in-house capabilities in packaging, test, failure analysis and reliability. For further information or questions, visit www.sandia.gov/mstc/ or email Trusted_ASIC@sandia.gov. -------------------------------------------------------------------------------- Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness. Sandia media relations contact: Neal Singer, nsinger@sandia.gov (505) 845-7078

milstar: obzornie tablizi -wse amerikanskie proizwoditeli AZP/ZAP Krome AZP/ZAP dannie kompanii wipuskajut i druguju produkziju ... Atmel AZP teper E2V -ewropejskaja firma http://finance.yahoo.com/q/co?s=LLTC+Competitors http://finance.yahoo.com/q/co?s=ISIL+Competitors LLTC -Linear Technology ADI - Analog Device ( primerno 50% mirowogo rinka AZP/ZAP analog. processorow) NSM -National Semiconductor TXN - Texas Instruments ISIL -Intersil MXIM -Maxim .... Sudja po tomu ,chto ADI na perwoj stranize imeet link k str. na russkom i izdana kniga W.Kestera po AZP/ZAP http://www.analog.com/en/index.html http://www.analog.com/ru/index.html Analog Device w Rossii ljubat ...

milstar: Borisova xoroscho znajut w NTZ Modul FGUP Progress i Elvees . Wse perechislennie zanjati razrabotkoj AZP ################################ http://www.armstrade.org/includes/periodics/news/2011/0305/18007421/detail.shtml Юрий Борисов назначен первым заместителем председателя Военно-промышленной комиссии ЦАМТО, 5 марта. Премьер-министр РФ Владимир Путин распоряжением №353-р от 3 марта 2011 года назначил первым заместителем председателя Военно-промышленной комиссии при правительстве РФ Юрия Борисова, освободив его от должности замминистра промышленности и торговли. Борисов Юрий Иванович родился 31 декабря 1956 года в г. Вышний Волочек Калининской области. Выпускник Калининского суворовского военного училища 1974 года. Окончил Пушкинское высшее командное училище радиоэлектроники ПВО в 1978 году и Московский государственный университет им. М.В.Ломоносова в 1985 году. Доктор технических наук. 1974-1978 гг. - курсант Пушкинского высшего командного училища радиоэлектроники ПВО. 1978-1998 гг. - служба на офицерских должностях в Вооруженных силах СССР, Российской Федерации. 1998-2004 гг. - генеральный директор ЗАО Научно-технического центра «Модуль». С июля 2004 г. по октябрь 2007 г. - начальник Управления радиоэлектронной промышленности и систем управления Федерального агентства по промышленности. С 19 октября 2007 г. - заместитель руководителя Федерального агентства по промышленности. 2 июля 2008 года распоряжением правительства Российской Федерации № 960-р был назначен заместителем министра промышленности и торговли РФ. Награжден Орденом «За службу Родине в Вооруженных Силах СССР» III степени и медалями.

milstar: Intersil Introduces New High-Speed ADC Family Offering Best-in-Class Performance and Power Tuesday February 15, 2011 - 12:00 PM EST [BR]http://finance.denverpost.com/mng-denver.denverpost/news/read?GUID=17211227 Marketwire News Releases Released By Intersil Includes 12-, 14-, and 16-Bit, 130 to 500 MSPS and Industry's Fastest 14-Bit ADC MILPITAS, CA -- (Marketwire) -- 02/15/11 -- Intersil Corporation (NASDAQ: ISIL) today announced its newest family of analog-to-digital converters (ADCs). Simplifying system design and speeding time-to-market, the new family offers pin-compatible 12-, 14- and 16-bit ADCs with sample rates from 130 to 500 megasamples per second (MSPS). The entire family provides unparalleled performance and offers a significant reduction in power consumption over competitive devices, consuming as little as one-third the power. Power amplifier linearization, radar and satellite antenna array processing, broadband communications, high-performance data ###################################################################################### acquisition and communication test equipment are ideal applications that benefit from the industry-leading performance and low power consumption. The first device to be introduced is the ISLA214P50, a 14-bit, 500MSPS ADC that consumes 63% less power while sampling at a rate 25% higher than any other 14-bit ADC. ########################### The ISLA214P50 was designed using Intersil's proprietary FemtoCharge™ technology and operates from a 1.8V power supply. The new converter's ultra-high sample rate and resolution improve sensitivity and accuracy, while the decrease in power consumption allows simplified thermal and power system design. The new ADC also combines breakthrough performance with extensive configurability, making it one of the most flexible and easy-to-use ADCs on the market. At a sample rate of 500MSPS, the ISLA214P50 features a signal-to-noise ratio (SNR) of 72.7dBFS with spurious free dynamic range (SFDR) of 84dBc for fIN = 30MHz (-1dBFS). The ISLA214P50 was recently selected by Spectrum Signal Processing By Vecima, a leading provider of high-performance, software-reconfigurable signal processing platforms, for use in their RF-4902 Wideband Frequency-Agile RF Transceiver. "We selected the ISLA214P50 because its combination of low power, high sample rate and excellent dynamic range enabled our RF-4902 to offer the most advanced platform for fielding SDR, SIGINT, and MILCOM applications," said Tudor Davies, Director of Technology at Spectrum. Because the ISLA214P50 consumes only 835mW of power, it can be used in systems that cannot tolerate the bulky heat sinks and fans that are needed to cool competitive devices. ################################ A serial peripheral interface (SPI) port provides access to the ADC's extensive feature set, such as power-management functions, output test pattern generation and output code format selection. Digital output data is presented in selectable LVDS or CMOS modes. The ISLA214P50 uses two time-interleaved 250MSPS ADCs to achieve the resulting 500MSPS sampling rate. ####################################################################### T.e. bez interleaving lutschij 14 bit TI A single 500MHz conversion clock is presented to the converter, and all interleave clocking and correction is managed internally. The proprietary Intersil interleave engine optimizes performance using automatic fine correction of offset, gain and sample time mismatches between the unit ADCs. The combination of FemtoCharge™ and I2E technology results in the industry's most power-efficient architecture for achieving extremely high sample rates without sacrificing dynamic performance. Other members of the family will include single and dual 12-, 14-bit, and 16-bit ADCs, offering unparalleled dynamic performance and ultra-low power consumption. All single channel devices have been designed to be pin-compatible to facilitate design reuse and significantly reduce time-to-market. Similarly, all dual channel devices are pin-compatible. All devices will be available in space-efficient 10x10mm, 72-pin QFN packages. For area-constrained PCBs, a subset will be offered in a 7x7mm, 48-pin QFN package, reducing the already small footprint by an additional 51%. All family members include the ability to synchronize multiple ADCs, which, when combined with exceptional low power consumption and small physical size, make them ideal for multi-channel, highly parallel systems. Flexible Evaluation System Ready Intersil is also making available a flexible evaluation system, developed to enable designers to analyze performance in both time and frequency domains. The system features a modular design with one motherboard that supports multiple ADC families. Matlab code is available for hardware-in-the-loop analysis and can capture greater than 1 Megasample in a single, contiguous stream. Users can download captured data to standard CSV files to apply specialized post processing. Pricing and Availability The ISLA214P50 is available in a 72-pin QFN package with an exposed paddle. Pricing starts at $185 each in 1,000-piece quantities. ################################################################################# Evaluation kits for the ISLA214P50, including complete support from Intersil, are available for $300 each. Samples for this new ADC family are available now, with full production planned for early 2011. For more information, please visit [BR]http://www.intersil.com/converters/NewADCs/Fastest14.asp. Key Highlights * Compact, single-width, 3U high form-factor * 200 MHz to 2.7 GHz frequency coverage * Operable for applications requiring up to 195 MHz receive, 400 MHz transmit analog bandwidth * Ultra-low “microsecond” settling time for demanding frequency-hopping applications * Full-duplex transceiver capability for TDD and FDD waveforms * On-board user programmable Virtex-5 SXT FPGA * Intersil ISLA214P50 14-bit ADC and Analog Devices AD9122 16-bit DAC * Digital IF/baseband output via high-speed serial interface * Supports synchronous operation across multiple modules for MIMO applications * Available in air-cooled or conduction cooled formats for use in harsh environments * Software API library, and reference software examples are available The RF-4902 can be used with Spectrum’s SDR-4000 Software Defined Radio (SDR) platform or for stand-alone use for integration into your own system. » Contact Spectrum Sales for more information.

milstar: http://www.intersil.com/converters/NewADCs/Fastest14.asp http://www.spectrumsignal.com/products-services/carriers-modules/ff-compactpci-boards/rf-4902/

milstar: 18 апреля 2011 г. Государственная Дума НАЧАЛО: 11.00 Малый зал. Комитет по промышленности проводит «парламентские слушания», посвященные наиболее острым и важным вопросам законодательного обеспечения развития электронной промышленности в России. Председатель Комитета Государственной Думы по промышленности, депутат фракции КПРФ С.В. Собко сформулировал задачу предстоящих парламентских слушаний следующим образом: «Сегодня надо говорить откровенно, отставание России в развитии элементной базы становится критическим. Это не просто экономическая проблема, это проблема национальной безопасности. Наши ракеты летают на микросхемах, купленных на Митинском рынке. Промышленная модернизация невозможна без создания собственной элементной базы. В плане законотворческой работы здесь огромное поле для деятельности». По итогам парламентских слушаний будут приняты рекомендации, которые содержат комплекс законодательных инициатив и предложений для органов федеральной исполнительной власти. Тел. для справок: 692-40-90 http://kprf.ru/announcements/90392.html ... ?

milstar: ? Religioznij deputat -predprinimatel ot KPRF reschil razobratsja w elementnoj base ? [BR]http://ru.wikipedia.org/wiki/%D1%E5%F0%E3%E5%E9_%D1%EE%E1%EA%EE Религиозные взгляды Председатель общественной организации «Российское христианское социальное движение», основанной в 1996 году[5]. По словам Собко, в Центре восстановления и коррекции зрения, входящего в «Собко и Ко», прошло курс лечения более 70 тысяч детей. Центр не приносит прибыли, так как детей из Москвы и Подмосковья там лечат бесплатно. Как сказал Собко, «я стремлюсь следовать по пути Учителя» (имея в виду Иисуса Христа), «я решил, раз живу здесь и с Москвой и Московской областью связан, свой посильный вклад внести»[4].

milstar: http://www.intersil.com/data/fn/fn7574.pdf 16-Bit, 250MSPS/200MSPS/130MSPS ADC • 75fs Clock Jitter • 700MHz Bandwidth Applications • Radar Array Processing • Software Defined Radios • Broadband Communications • High-Performance Data Acquisition • Communications Test Equipment Functional Description The ISLA216P25 is based upon a 16-bit, 250MSPS A/D converter core that utilizes a pipelined successive approximation architecture (Figure 18). The input voltage is captured by a Sample-Hold Amplifier (SHA) and converted to a unit of charge. Proprietary charge-domain techniques are used to successively compare the input to a series of reference charges. Decisions made during the successive approximation operations determine the digital code for each input value. Digital error correction is also applied, resulting in a total latency of 10 clock cycles. This is evident to the user as a latency between the start of a conversion and the data being available on the digital outputs.

milstar: Predwaritelnaya ocenka awtora - silami NTZ Module ,FGUP PRogress ,Elvees pri nalichii zelanija S.Ivanova ,J.Borisova chto-to podobnoe wozmozno i neobxodimo razrabotat ... ################################### Dlja sprawki PCH Misltar 7.4 ghz i 70 mgz http://www.mitre.org/work/tech_papers/tech_papers_99/airborne_demo/airborne_demo.pdf Sowremennie 16 bit AZP dajut wozmoznost podnjat 2 PCH do 250 mgz (polosa signala do 80-100 mgz) DARPA/Lincoln laboratory NLEQ http://www.ll.mit.edu/HPEC/agendas/proc09/Day2/S4_1405_Song_presentation.pdf ######################################################### Copy from answer of patentholder ####################### Hello ...(milstar) ...Your questions are definitely relevant to the work we do at GMR. Regarding question 1. The increase in dynamic range is very much dependent on the ADC type and indeed the full RF front end. Our techniques increase the dynamic range for ADCs and/or the entire RF front-end including the ADC. For example in systems where the receiver amplifier (typically a low noise amplifier) is a dominant factor in the linearity we can fix those nonlinearities as well. In addition, we correct for other distortions that are not harmonic in nature. For example, many systems use digitization methods that in effect use interleaving of 2, 4 or more ADCs in parallel thus achieving high sampling rates and high linearity. Unfortunately the interleaving itself is a source of errors that limits the overall dynamic range . GMR's iNLEQ techniques overcome those types of errors. The specific ADCs you reference (assuming they are working on their own and not interleaved with others per the iNLEQ discussion above) will typically have improvements in dynamic range of about a) 12dB, b) 18dB, and c) 18 dB, respectively. Please note further that while these ADCs appear from the outside to be a single component they are, in fact, internally composed of multiple sampler sub-devices and therefore we use our iNLEQ interleaving error mitigation techniques as well. Regarding question 2. We certainly use our techniques in addition to other forms of error mitigation. We would need to discuss specifics for me to give you a more definitive answer about how best to make this work for any specific system. We typically collaborate with other companies or organizations to achieve the most cost effective solutions for them. Please let me know if I can be of further assistance. Best regards, Gil Raz GMR Research & Technology, Inc. ---------------------------------- Gentlemen Author of this e-mail have some questions about NLEQ processor perspective . Excuse the author ,if questions are not relevant Relevant answer would appreciated 1. How great can be dynamic rang extension with NLEQ processor and new ADC a. ADC9467 16 bit/250 msps b. EV10AS150 10 bit/2.5 gsps c. ADC12D1800 - 12-Bit, Single 3.6 GSPS ADC 2. Is possible combination of NLEQ with another method*s http://highfrequencyelectronics.com/Archives/Nov08/1108_Friedman.pdf http://highfrequencyelectronics.com/Archives/Sep08/HFE0908_S_Crean.pdf A Wide Dynamic Range Playback System for Radar Signals X-Band Receiver The MITEQ X-Band receiver is of a dual conversion superheterodyne architecture that translates a 10 GHz signal with a bandwidth of 1 GHz to an IF center frequency of 70 MHz and a bandwidth of 20 MHz for stretch processing of radar returns. The receiver also includes a wideband IF output at 1 GHz for use with advanced high speed ADC (analog to digital converter) processing techniques such as optical processing, time sequenced ADC arrays, or time stretched ADC arrays http://highfrequencyelectronics.com/Archives/May08/HFE0508_Cannata.pdf

milstar: http://www.rosrep.ru/news/index.php?ELEMENT_ID=5139&SECTION_ID=16 Компания "Ангстрем" и китайский производитель подписали соглашение о совместном производстве телекоммуникационного оборудования Компания "Ангстрем" и китайский производитель Huawei подписали соглашение о совместном производстве телекоммуникационного оборудования, в том числе для строительства сетей LTE. ####################################### Производство будет развернуто на мощностях "Ангстрема" в Зеленограде, его запуск запланирован на IV квартал 2011 г. В перспективе российская компания собирается выпустить линейку оборудования под собственным брендом. До тех пор пока в России не будет решен вопрос о выделении частот под сети четвертого поколения, потенциальным рынком сбыта могут стать страны СНГ. ####################################################################### В рамках соглашения, которое компании подписали вчера, "Ангстрем" будет производить телекоммуникационное оборудование под маркой Huawei на собственной производственной базе в подмосковном Зеленограде. Кроме того, компании будут совместно разрабатывать технологические решения. Начать производство планируется в IV квартале 2011 г., его проектная мощность составит до 10 тыс. изделий в год. ############################################################################################### W mire 2.2 mln bazowix stanzij wsex modifikazij W Rossii 110 000 bazowix stanzij Stoimost bazowoj stanzii LTE bez ystanowki - primerno 27 000 $ Esli w nix budut ispolzowatsja rossijskie GaAS/GaN i rossijskie AZP ############################################ to S.Ivenovu yawnij + В рамках проекта в 2011 г. "Ангстрем" инвестирует в технологическую базу 400 млн руб. Со своей стороны Huawei предоставит разработки и технологии, подготовит специалистов "Ангстрема" и установит систему контроля качества продукции. Производство и продажу полностью возьмет на себя "Ангстрем", Huawei, в свою очередь, получит лицензионные отчисления. На первом этапе "Ангстрем" будет производить базовые станции LTE, оборудование DWDM (OSN6800 и OSN1800), оборудование доступа (MA5600T и МА5603Т), IP-switch (S2300 и S3300 + S5300), оборудование РРЛ (серия RTN) и операторские маршрутизаторы (серии NE40/NE80/NEx). ############## Как рассказал на пресс-конференции президент НПО "Ангстрем" Алексей Таболкин, в дальнейшем компания планирует наладить производство собственной продукции. "Сейчас мы работаем над созданием линейки оборудования под собственным брендом, - сказал он. - Первый этап сотрудничества - это локализация производства". К 2013 г. в Зеленограде будут открыты дополнительные производственные мощности. ######################################################################################## Пока же, по словам Алексея Таболкина, компания проводит маркетинговую работу и изучает рынки сбыта. "Мы планируем в процессе усложнения локализации постепенно менять в собираемом оборудовании импортную микроэлектронику на российскую. ################################################################################# И начнем с интеграции в оборудование Huawei однокристального микропроцессора с функцией навигации ГЛОНАСС/GPS, разработанного на "Ангстреме", - говорит он. Huawei, в свою очередь, заинтересован в расширении партнерства с российскими производителями. По словам первого заместителя главы российского представительства компании Александра Богданова, Huawei ведет переговоры и с другими компаниями и в дальнейшем рассчитывает иметь несколько партнеров. Пока же китайский производитель ожидает, что сотрудничество с "Ангстремом" позволит ему увеличить свое присутствие на российском рынке. Компании рассчитывают, что в 2013 г. объем продаж оборудования совместного производства составит около 1 млрд руб. в год. ####################################################################################### Для начала потенциальным рынком сбыта станет Россия, а в дальнейшем - страны СНГ, сказал Алексей Таболкин. "Пока объем производства не такой большой, чтобы осваивать другие рынки", - считает он. Аналогичное партнерство российского производителя и иностранной компании реализуется в Томской области. Как ранее сообщал ComNews, в марте 2011 г. Nokia Siemens Networks, компания "Микран", администрация Томской области и корпорация "Роснано" подписали соглашение о создании производства оборудования для сетей LTE. ##################################### Mikran izgotowitel GaAS dlja AFAR MiG-35 Его запуск в Томске запланирован на IV квартал этого года, серийный выпуск будет налажен к 2012 г. Первоначальный объем выпускаемой продукции составит около 10 тыс. базовых станций в год (см. новость на ComNews от 15 марта 2011 г.). ########################################################################## Начало продаж ожидается в IV квартале 2011 г., однако проблема с выделением частот под строительство сетей LTE в России пока не решена. На вопрос о целесообразности таких сроков председатель совета директоров "Ангстрема" Леонид Рейман сказал, что главная цель проекта - организовать производство телекоммуникационного оборудования нового типа, а также провести совместные исследования и разработки. "Производство прежде всего нацелено на Россию, но сети LTE уже есть в других странах СНГ", - сказал он. Между тем операторы "большой тройки" уже развернули тестовые сети LTE в странах СНГ: МТС - в столице Армении Ереване и в столице Узбекистана Ташкенте, а "ВымпелКом" - в двух столицах Казахстана, Алма-Ате и Астане. Правда, проработали сети в Казахстане недолго, и пока оператор ведет переговоры с регулятором о полноценном запуске. Поставщиком оборудования для проекта "ВымпелКома" в Казахстане выступила компания Alcatel-Lucent. "Партнеры сами обратились к нам с предложением совместно развернуть сеть четвертого поколения, и их оперативность оказалась решающим фактором для начала сотрудничества", - сказал репортеру ComNews руководитель департамента по связям с общественностью в СНГ компании "ВымпелКом" Артем Минаев. По его словам, важным фактором при выборе партнера стал опыт в реализации аналогичных проектов. Например, у Alcatel-Lucent совместно с Verizon запущена сеть LTE в 700-м диапазоне в США. В начале 2011 г. сеть в Алма-Ате была отключена по окончании действия лицензии. "Окончательного решения по LTE нет, но мы ведем совместную работу с регулятором на тему развития в республике сетей связи четвертого поколения", - пояснил ситуацию Артем Минаев. "ComNews" 9 июня 2011 года

milstar: Executive Summary  Like they did last year, Ericsson and Huawei share the top spot in the LTE ranking.  The LTE infrastructure market is forecast to grow from approximately $2.5 billion USD in 2011 to $13 billion USD by 2016. ###########################################################  As operators increase their levels of infrastructure investment, all the vendors have reported improved financial performance in 2010 and early 2011. The LTE vendor set is therefore unlikely to be reduced further in the short term, despite previous consolidation trends.  The WiMAX vendor set continued to shrink in 2011 as WiMAX loses momentum and is increasingly regarded as legacy technology by operators. Further reductions of the WiMAX vendor set are possible.  All major RAN vendors have introduced distributed base stations using centralized baseband processing – so-called baseband farms. These types of deployments are increasingly being adopted by operators. Operators may find that having invested in a baseband farm, they are locked-in to that vendor. Competitors may find that once another vendor deploys a baseband farm, access to that area has been effectively blocked.  Early LTE deployments are concentrated among a handful of operators, notably Verizon. This has benefitted Ericsson and Alcatel Lucent above all, who are the only vendors that have deployed commercial-scale networks, giving them a head start in maturing their LTE technology.  Huawei and NSN are positioned for future growth due to the large number of LTE contracts they have been awarded. Maravedis notes that many of these contracts are for small trial networks, and do not guarantee future deployments.  Huawei has succeeded in penetrating the technologically demanding Western Europe market and has rolled out some of the larger LTE networks. We expect them to become the largest network vendor in the near future.  The market for LTE small cells has not yet materialized, in part because vendors don’t have products ready to go to market. Maravedis expects LTE small cell deployments to begin in 2012, with increasing volume in 2013 and 2014.  3G Leapfrogging is not yet a phenomenon in the wireless industry. Maravedis has identified that 21 out of 25 top LTE operators, or 84%, will be moving from HSPA to HSPA+ prior to their evolution to LTE.  All vendors are pushing into cloud computing and service delivery. They are becoming increasingly sophisticated solution providers deriving a growing portion of their income from services – installation, engineering, and network operations.  The more sophisticated LTE Vendors are working to develop capabilities in their mobile network solutions to drive ARPU, particularly in video services. http://www.maravedis-bwa.com/assets/media/pdf/Brochures/brochure%204GgearQR_June2011%20RAN%20Trends.pdf

milstar: Hittite's High Speed ADCs Target Digital Storage Oscilloscopes June 3, 2011 Hittite Microwave Corporation, the world class supplier of complete MMIC based solutions for communication & military markets, has introduced three new ADCs that are ideal for Digital Storage Oscilloscopes (DSOs). The combination of low power and 1 GSPS sample rate yields the industry's first ADC solution for 1 GSPS USB powered Oscilloscopes. The HMCAD1520, HMCAD1511 and HMCAD1510 feature integrated functions which are ideal for DSO applications. Integrated crosspoint switches allow switching between quad, dual and single channel modes, while integrated 1 to 8 x clock dividers keep the input clock frequency constant when the number of channels is changed. The HMCAD1511 features 8-bit resolution at 1 GSPS sample rate. A 13-bit internal resolution allows up to 32 x (30 dB) of digital gain without missing codes, allowing the user to replace analog gain circuitry with digital gain settings. At 1 GSPS and 710 mW, the HMCAD1511 consumes the industry's lowest power, enabling the implementation of USB powered oscilloscopes up to 1 GSPS. By interleaving 2 or 4 HMCAD1511 ADCs, overall sample rates of 2 or 4 GSPS can be achieved respectively. The low size and power of HMCAD1511 make it an excellent building block for Oscilloscopes up to 4 GSPS. The HMCAD1520 provides up to 12-bit resolution at up to 640 MSPS, making it ideal for precision DSOs. The HMCAD1511 is available as an operational mode for the HMCAD1520, allowing combined 12-bit and 8-bit implementations. The HMCAD1510 features 8-bit resolution up 500 MSPS. The device consumes the lowest power in the industry at 295 mW, making it an ideal choice for high performance handheld battery powered oscilloscopes. All three ADCs can be evaluated with the Hittite EasySuite evaluation kits, EKIT01-AD1520, EKIT-AD1511 and EKIT-AD1510.The evaluation kits are based on Xilinx FMC (FPGA Mezzanine Card) SP601 standard motherboards, and feature Hittite evaluation boards with on-board ADCs connected to the Xilinx board through an FMC connector. Hittite's pre-loaded EasyStack firmware performs FPGA processing, while the EasySuite PC software tool performs ADC configuration, data capture and performance analysis. The HMCAD1520, HMCAD1511 and HMCAD1510 ADCs are housed in 7 x 7 mm plastic leadless surface mount packages.Samples and Evaluation Kits are available from stock and can be ordered via the company's e-commerce site or via direct purchase order. For more information, visit www.hittite.com. About Hittite Microwave Corporatio Hittite Microwave Corporation is an innovative designer and manufacturer of high performance integrated circuits, or ICs, modules, subsystems and instrumentation for technically demanding digital, RF, microwave and millimeterwave applications covering DC to 110 GHz. The Company's standard and custom products apply analog, digital and mixed-signal semiconductor technologies, which are used in a wide variety of wireless / wired communication and sensor applications for Automotive, Broadband, Cellular Infrastructure, Fiber Optics & Networking, Microwave & Millimeterwave Communications, Military, Test & Measurement, and Space markets. The Company is headquartered in Chelmsford, Massachusetts. SOURCE: Hittite Microwave Corporation

milstar: Dannie po zifrowoj obrabotke signala 1000 mgz za 1998 god 3.1.2 Radar Data Collection X-Band radar data are collected with Haystack in a staring mode. Four channels are processed in the radar: PP sum, OP sum, PP traverse difference, and PP elevation difference. Data from all four channels are coherently converted to a 60-MHz intermediate frequency, filtered to 1-MHz bandpass, further downconverted to 5 ± 0.5 MHz, and then digitized at a rate of 20 MHz using a 10-bit digitizer. In-phase (I) and quadrature (Q) data are created at a 5-MHz sample rate, and then thinned without averaging to a 1-MHz rate. Using about a 40% range overlap, the I and Q samples are fast Fourier transformed (FFT) to the frequency domain. Complex FFT data for each channel are sent to a memory buffer containing data for the previous 12 to 20 pulses. To minimize the archiving of data with no detections, a noncoherent 12-pulse running sum of the PP sum channel data is maintained, and only when a threshold is exceeded are the spectral data for all four channels permanently recorded to tape. The recording threshold is intentionally set lower than allowed in subsequent processing to ensure that no usable data are missed. http://ston.jsc.nasa.gov/collections/TRS/_techrep/TM-1998-4809.pdf

milstar: Hittite’s 18 GHz Ultra Wideband Track-and-Hold Amplifier Enhances High Speed ADC Performance By Hittite Microwave Wideband data acquisition systems with multi-GHz bandwidth are needed for a variety of applications such as software defined radio, radar systems, Electronic Warfare (EW) / Electronic Intelligence (ELINT) and test and measurement equipment. Ideally, system designers would like to be able to connect the signal source (for example an antenna) directly to a wideband, high dynamic range Analog-to-Digital Converter (ADC) for digitization. http://www.mpdigest.com/issue/Articles/2011/apr/hittite/Default.asp Although several high speed ADCs offer enhanced sample rates, few of them offer input bandwidth beyond a few GHz. In addition, maintenance of good sampling linearity at frequencies above the UHF band is technologically challenging and most current ADCs suffer rapidly degrading linearity above 1 or 2 GHz signal frequency. These limitations result from the Track-and-Hold Amplifier (THA) which sample the input signal at a precise time instant and holds the value of the sample constant during the analog-to-digital conversion. This THA (integrated into the ADC) is often not optimized for ultra wideband operation. These limitations can be overcome by using Hittite’s HMC5640BLC4B Ultra Wideband Track-and-Hold Amplifier, which is designed for use in microwave data conversion applications requiring maximum sampling rate, low noise and high linearity over a wide bandwidth. The HMC5640BLC4B, which offers 18 GHz input bandwidth and excellent broadband linearity, is used as an external master sampler at the front end of an ADC The THA maintains excellent linearity over a very broad bandwidth with 56 dB or better Spurious Free Dynamic Range (SFDR) from DC to beyond 5 GHz at full scale input. Users may perform post conversion processing to reduce the wideband noise floor and may choose to tradeoff input signal level for higher linearity. A reduction of input level to half full scale results in 10-bit or better linearity across a wide bandwidth (Table 1) Performance of the HMC5640BLC4B Track-and-Hold with a Commercially Available 1.6 GS/s, 12-Bit Dual ADC ###################################################################### As shown in Figure 3, the 18 GHz bandwidth HMC5640BLC4B radically enhances the sampling bandwidth well beyond the intrinsic 2.8 GHz ADC bandwidth. /predpolozitelno ADC -dual 12 bit National -smotri dannie nize / -------------------------------------------------------------------------- Comparison of the SFDR curves shows that the HMC5640BLC4B not only enhances the SFDR beyond the bandwidth of the ADC but also enhances it for frequencies within the 2.8 GHz ADC bandwidth by up to 11 dB. ############################## National Semiconductor Introduces Industry’s Fastest 12-bit ADC Combination of 12-bit Resolution and 3.6-GSPS Sampling Rate Enables New Applications for Wideband Software-Defined Radios May 24, 2010 – National Semiconductor Corp. (NYSE:NSM) today introduced the Industry’s fastest 12-bit analog-to-digital converter (ADC). At 3.6 Giga-samples per second (GSPS), the ADC12D1800 is 3.6 times faster than any other available 12-bit device. The ADC’s dynamic performance of -147 dBm/Hz noise floor, 52 dB noise power ratio (NPR) and -61 dBFS intermodulation distortion (IMD) enables a new generation of software-defined radio (SDR) architectures and applications. In addition to the ADC12D1800, National introduced two other members of its ultra high-speed ADC family: the ADC12D1600 with sampling speed up to 3.2 GSPS and the ADC12D1000 with performance up to 2.0 GSPS. All three PowerWise® ADCs target wideband SDRs including radar, communications, multi-channel set-top box (STB), signal intelligence, and light detecting and ranging (LIDAR) applications https://www.national.com/news/item/0,1735,1459,00.html

milstar: TI Bolsters Ultra-low Power, High Speed ADC Family Mon. July 25, 2011 Source: Texas Instruments Inc. Texas Instruments Inc. expanded its line of high speed, ultra-low power consumption analog-to-digital converters (ADCs) with eight dual-channel devices available in 12- and 14-bit resolutions at speeds from 65 to 250 MSPS. With these additions, the ADS42xx family provides the performance and bandwidth needed for 3G/LTE wireless base stations, portable test and measurement and software defined radio applications, while providing best-in-class power consumption. Key features and benefits of the ADS42xx family: • The 14-bit ADS4246 uses 332 mW total power at 160 MSPS, 35-percent less power than its closest competitor. The family provides options down to 92 mW per channel to reduce board heating and operating costs. • Pin-compatible 12- and 14-bit options, with speeds ranging from 65 to 250 MSPS, enable customers to move to higher resolutions and sample rates without redesigning the board. • Pin-compatible with 11-bit, 200-MSPS ADS58C28, providing a license-free export option with up to 65 MHz of high-performance RF channel bandwidth at input frequencies over 200 MHz. • 6-dB programmable gain option provides the flexibility needed to achieve a high signal-to-noise ratio of up to 73.6 decibel full scale (dBFS) and spurious free dynamic range (SFDR) of up to 91 dBc for high receive sensitivity in 3G/LTE wireless infrastructure. TI offers a variety of tools and support to speed development with the ADS42xx family, including: •An evaluation module (EVM) for each part. •TSW1200 digital capture tool for rapid analysis of EVMs. •An Altera-compatible high-speed mezzanine connector and Xilinx-compatible FPGA mezzanine connector, allowing ADS42xx EVMs to mate to FPGA EVMs to speed system-level prototyping. •IBIS models to verify board signal integrity requirements. •Software for calculation utilities, including an ADC harmonic calculator, anti-aliasing calculation tool, and jitter and SNR calculator. http://mwjournal.com/News/article.asp?HH_ID=AR_11162

milstar: High-speed ADC technology paves the way for software defined radio Yiannis N. Papantonopoulos, Systems and Applications Manager, Texas Instruments 8/3/2007 9:11 AM EDT Software Defined Radio (SDR) addresses the tremendous capital expenditure demands placed on operators as wireless standards continue to evolve and change. The cost to install infrastructure is considerable, and it's this cost that inhibits rapid adoption and deployment of new wireless technologies. This poses a significant hindrance to the agility of operators in offering new and improved services to their subscribers. Paradoxically, the goal of a fully reconfigurable radio that can adapt to a new standard or accommodate multiple standards simply through software upgrades is not limited by software. Indeed, it is the analog domain and its bridge to the digital world that presents system designers with their biggest challenge. The focus of this article is on the challenges of analog-to-digital (A/D) conversion as they pertain to SDR implementations, and how breakthroughs in analog-to-digital converters (ADCs) can bring true SDR closer to reality. The problem The big promise of SDR for operators is that it will eventually allow them to deploy one network, and one set of infrastructure capable of handling a broad range of radio frequencies and standards, along with their future evolutions. This requires the radio design to be flexible enough to allow for wider frequency coverage than usual. Additionally, it has to offer dynamic range beyond the range necessary for narrow band applications. So, ultimately, we could deal with a multi-carrier environment with carriers of different modulation types and bandwidths, blocking requirements, and other attributes. Advances in digital signal processing (DSP) technology have elevated the digital backend capabilities of radios to levels that can be amenable to SDR implementations. Hence, the missing piece of the puzzle is getting the extremely-sensitive analog signals converted to the comfort of the digital domain. A/D conversion in these radios is pivotally important in trying to realize the goal. ADCs are used in both the receiver (Rx) and the transmitter (Tx) sections of the radio, and are the enabling components for SDR development Key ADC specifications Among the primary specifications driving the design of the Rx section of the radio are sensitivity and usable bandwidth. In simple terms, sensitivity refers to the radio's ability to effectively process very low-level signals at the antenna input, expressed in dBm. For the ADC, this most commonly translates into signal-to-noise ratio (SNR) specifications expressed in dBc or dBFS (dBc is the ratio of signal to noise expressed in reference to the carrier, whereas dBFS refers back to the full scale input of the ADC). Closely related to the radio's capability to receive small signals and reject larger interferers is the spurious-free dynamic range (SFDR) of the ADC. This is the ratio of the wanted signal (carrier) to the next highest spurious component in the ADC's output, whether it is harmonic or not, expressed in dBc. Finally, the usable bandwidth of the converter, a term really not specified effectively, deals with the actual signal bandwidth that the ADC can digitize with adequate SNR and SFDR performance. In standard industry practice, ADCs are specified to their -3dB point of their analog input 'frequency response.' However, a lot of modern day converters show dramatically decreased performance as the analog input frequency increases past 200-300 MHz, even though their bandwidth is rated to several hundreds of MHz. It's all about bandwidth One of the key advantages of SDR is its ability to handle a larger-than-usual frequency range without the need for new hardware. This is particularly appealing, given the nature of today's frequency map across the world. Each wireless standard has multiple frequencies defined for operation. For example, GSM alone can operate at frequencies around 400 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, and even 2500-2690 MHz for the GSM extension band. 3GPP frequencies include 1800 MHz, 1900 MHz and 2100 MHz, while WiMAX frequencies exist in the 2500 MHz, 3500 MHz, and all the way to 5 GHz, with more coming. With such a plethora of frequencies, digitizing as large a signal bandwidth as possible through the ADC becomes a huge advantage. Therefore, it is the ADC sample rate that becomes critical in such implementations. #################################################################### The Nyquist criterion limits the bandwidth an ADC can effectively digitize without aliasing (a process whereby the wanted signal after digitization folds over on itself thus producing distortion) to half its sample rate (Fs/2). Thus, for an ADC sampling at 200 MSPS (megasamples per second), the maximum bandwidth that can be effectively digitized is 100 MHz. In practical implementations, though, the filter used to band-limit the analog input to Fs/2 has a finite roll-off, which effectively further reduces the usable bandwidth. ##################################### Beyond the receiver, the demand for high bandwidth also is key for the transmit section of the radio. Since the cost of the power amplifier is proportional to its output power, a key method of reducing the overall bill-of-materials (BOM) and operational cost is through increasing its efficiency. Modern digital pre-distortion algorithms that linearize the power amplifier at the transmitter rely on feeding back to the digital processor a digitized bandwidth that is a multiple of the transmitted signal's bandwidth. This, in turn, necessitates the use of an ADC capable of sampling at very high rates. Signal-to-noise ratio In order to maintain utmost sensitivity, an SDR design has to feature a large SNR so that very low-level received signals can be discerned, and effectively demodulated. The evolution of wireless standards to higher-order modulation schemes (such as 64QAM) imposes more stringent requirements on the SNR performance of the ADC. In situations where the received input power at the antenna is really low, the SNR of the ADC (in conjunction with the phase noise of the local oscillator) becomes the limiting factor and sets the sensitivity for the entire receiver. Until recently, SDR designers had to trade off SNR for sample rate (bandwidth), since the state-of-the-art ADCs at several hundred MSPS were limited to resolution of 10 bits, with SNR levels around 50 dBFS. With the introduction of converters such as the ADS5463 (12-bit/500 MSPS), the envelope for monolithic 12-bit, ADCs essentially has doubled (previous art was at 250 MSPS). With SNR levels jumping to the mid-60s, implementations previously prohibitive can now become reality. In addition to being able to effectively reconstruct as large an analog signal bandwidth as possible, the sample rate of the ADC offers an added benefit, usually referred to as processing gain. Typically, SNR for an ADC is calculated as the ratio of the power of the fundamental of a sinusoidal tone to the sum of the noise across the entire Nyquist band of the ADC (0 Hz through Fs/2, excluding DC). Typically, total noise is uniformly spread across the Nyquist zone. When the receiver processes a signal of a certain bandwidth within that zone, powerful digital filters can greatly attenuate the out-of-band noise. When the signal of interest has a bandwidth BWSIG and the ADC samples at a rate of Fs, the effective processing gain (PG) can be calculated as: Figure 1 shows the processing gain that can be achieved by using a very high-speed ADC such as the ADS5463, sampling at 500 MSPS. Figure 1: Processing gain versus wanted signal bandwidth for an ADC sampling at Fs = 500 MSPS (Click to enlarge image) The power of the digital backend of the SDR can fully exploit the benefits of the wideband capabilities of the ADC. Ultimately, the evolution of wireless receivers will entail direct sampling at the RF frequency. Although the ADC technology needed for such a task is not feasible today, it is not unreasonable to expect that eventually technological breakthroughs may enable it. However, jitter needs to be taken into account since, ultimately, it will limit the SNR. The well-documented equation that relates SNR to jitter for a sampled system is given in Equation 2: where fin represents the analog input frequency, and tjitter the RMS value of the system's jitter. The internal jitter of the ADC sampling circuitry is added (in a root of the sum of squares fashion) to the externally provided sampling clock to the ADC. Note that the limitation of SNR is independent of the actual sampling frequency, but directly related to the analog input frequency. This fundamental limitation is a major design consideration when deciding the placement of the intermediate frequency (IF) in receiver design. The benefit of simplified Rx architecture and filtering (and, hence, reduced cost) is countered by the limitations imposed by jitter and clocking the ADC as the IF is increased. Spurious-free dynamic range (SFDR) The linearity of an ADC, most often characterized by its SFDR, becomes critical in situations where the incident power at the receiver's antenna is of substantial power levels. This can happen when the wanted signal is strong (a desirable situation), or when an in-band interferer is strong (an undesirable situation). In the latter case, the linearity of the ADC dictates whether the wanted signal can be effectively demodulated. This is particularly true when the desired signal's power is low. The presence of a large interferer effectively limits the application of any AGC function, since the total signal (wanted plus interferer) may already be approaching the full-scale range of the analog input. Thus, the ADC's inherent linearity performance becomes the bottleneck. Just as jitter limits how high an SDR designer can place the IF, SFDR also weighs into that decision quite heavily. Many ADCs available in the market today exhibit high levels of linearity that are, however, limited to input frequencies below 200 MHz. Hence, the benefits of high IF placement cannot be realized due to the roll-off in SFDR performance. New analog structures using cutting-edge BiCMOS process technologies have enabled the inclusion of an analog input buffer, capable of delivering high levels of SFDR across many hundreds of MHz. The analog input buffer of the ADS5463, for example, allows the user to easily achieve datasheet performance because it isolates the sensitive analog input from the switching within the ADC. Additionally, it provides constant impedance across input frequency. Figure 2 shows that a converter such as the ADS5463 enables SFDR performance of over 70 dBc, for IFs at least as high as 500 MHz. ############################################################ Figure 1: ADS5463 SNR and SFDR performance over analog input frequency at 500 MSPS (Click to enlarge image) This dramatic improvement in performance substantially simplifies the design of the radio, especially since it is coupled with very high levels of SNR and processing gain. Using a very-high input frequency can further reduce the cost of the radio, since it removes an extra down-conversion step and its associated BOM impact. Conclusion The promise of true software-defined radio depends heavily on the evolution of high speed A/D conversion. Located at the heart of both the receiver and the transmitter, the ADC sets the performance for the entire radio. Recent breakthroughs in mixed-signal technology have enabled performance at unprecedented sample rates and analog input frequencies, simplifying the radio design and allowing for broader operating bandwidths and higher levels of sensitivity. As ADC technology keeps pushing the envelope, it will continue to pave the way for the advent of truly reconfigurable, multi-standard radio. About the Author Yiannis Papantonopoulos is Systems and Applications manager for high-speed ADCs at Texas Instruments Inc. He can be reached at yiannis@ti.com. http://www.eetimes.com/design/automotive-design/4009968/High-speed-ADC-technology-paves-the-way-for-software-defined-radio



полная версия страницы