Форум » Дискуссии » Bazirowanie tipa MX,Bunkeri » Ответить

Bazirowanie tipa MX,Bunkeri

milstar: MPS ("Mobile Protective Shelters"). Согласно концепции MPS, для размещения 200 МБР предполагалось создать 4600 стартовых площадок-укрытий для горизонтального размещения ракет, рассредоточенных по окружности большого диаметра. Ракета должна была скрытно перемещаться из укрытия в укрытие по случайному закону. Уровень защищенности укрытий должен был быть таким, чтобы обеспечивать вывод из строя только одного укрытия одной атакующей боеголовкой противника. При получении сигнала на пуск крыша укрытия раздвигалась, и ракета, поднявшись в вертикальное положение с помощью системы специальных домкратов, стартовала В июне 1979 года началась полномасштабная инженерная проработка ракеты MX с основным видом базирования в соответствии с концепцией MPS. Однако, в ходе работ выяснилось, что выбранный вид базирования требовал не только больших финансовых затрат (37 млрд. $), t.e. 1.5 % WWP w aktualnix cenax . Wpolne dopustimo ( VVP Rossii w 2010 2209 mlrd $ ,esli za 33mlrd $ mozno w yslowijax Rossii sozdat podobnoe bazirowanei -to eto neobxodimo rassmotret) GDP USA w 1979 - 2562 mlrd $ ( w cenax 2005 -5855 mlrd $) w 1989 -5482 mlrd $ (w cenax 2005 -7885 mlrd $ ,SSSR-1989 -2350 mlrd $ discounted CIA ev) w 2005 -12638 mlrd $ Тогда же были развернуты работы по новому варианту базирования, т.н. ”плотной упаковки” - CSB ("Closely Spaced Basing", она же “Dense Pack”). В соответствии с этой концепцией предполагалось строительство сверхукрепленных шахт (рассчитанных на избыточное давление во фронте ударной волны более 700 кгс/см2) всего в 550 метрах друг от друга. Идея заключалась во взаимоуничтожении атакующих боеголовок противника и гашении ударных волн ядерных взрывов, что позволило бы уцелеть основной части ШПУ и произвести ответный запуск. Впрочем, быстро стало ясно, что концепция CSB основана на чрезвычайно сомнительных допущениях. http://rbase.new-factoria.ru/missile/wobb/mx/mx.shtml 700 кгс/см2 -eto 10 000 psi . ili 700 atmosfer ili dawlenie na glubine 7 km Bunerbuster 13 tonn (s B-2) probiwaet 8 metrow 10 000 psi krepkost granita -20 000 psi specialnie materiali dlja bunkerow imejut bolee 100 000 psi ,Iran raspologaet materialami 30 000 - 40 000 psi .Rossija ochewidno toze Твердотопливная МБР подвижного подземного базирования в 23 сосредоточенных по кругу шахтах для каждой ракеты (т.н. «ипподромный» - Race-track – тип базирования), 1979 г. Работы прекращены в 1980 г. http://www.militaryparitet.com/nomen/usa/rocket/data/ic_nomenusarocket/4/

Ответов - 82, стр: 1 2 3 4 5 All

milstar: arXiv:physics/0510052v5 [physics.soc-ph] 19 Nov 2005 The B61-based “Robust Nuclear Earth Penetrator:” Clever retrofit or headway towards fourth-generation nuclear weapons? ∗ Andre Gsponer Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: isri@vtx.ch Version ISRI-03-08.18 February 2, 2008

milstar: We have then reviewed the physical and engineering reasons which explain the penetration depth of the main earth-penetrating nuclear weapon currently available in the United States’s arsenal, the B61-11, and derived crude estimates in terms of maximum sustainable decelerations of the ultimate impact-resistance of the B61-7, the warhead enclosed in the B61-11 penetrator. This has led us to consider four different possibilities for designing a RNEP able to bury the B61-7 warhead 30 meters into concrete, or 100 to 150 meters into earth. The first solution is simply to build a 8-meter-long, 360-mm-caliber, 10- ton-heavy penetrator made out of a good tungsten alloy. This would be a “1950s generation” style weapon, albeit fitted with a modern two-stage thermonuclear warhead, and a GPS guidance system allowing for high precision delivery under all weather conditions. Little sophisticated engineering development would be required to produced the penetrator, and no change would have to be made in the B61-7 warhead: the version carried by the B61-11 could be used without modification. However, considering the weight and size of that first solution, we have in- vestigated the possibility of augmenting the impact velocity by means of a rocket engine. This immediately led to contemplate considerable engineering difficulties, because while the major nuclear components could probably resist the increased stresses arising from the greater impact and penetration decelerations (with the exception of the chemical explosives which may have to be improved), many of the more fragile ancillary non-nuclear components of the weapon would have to be redesigned, using new materials and techniques which are not yet readily avail- able. Moreover, even by making a compromise such that the penetrator would not be so large and heavy as the one considered in the first possibility, fitting it with a suitable rocket engine would not make it much less cumbersome. We have therefore turned to the possibilities of aiding penetration by means of a precursor shaped-charge. Here we have met again with considerable engineering difficulties, especially since designing a shaped charge powerful enough to clear the way to a circa 30 cm diameter penetrator containing a B61-7 warhead looks very difficult, and this only to augment its penetration capability by possibly 50% under the best conditions. The last possibility we have considered is more speculative: Assuming that radically new types of compact nuclear explosives will become available in the next few decades (i.e., low-yield pure-fusion thermonuclear explosives derived from ICF pellets which are extensively studied at present in many laboratories) speculations have been made on hypothetical new designs which could provide a technically more attractive solution than the three previous possibilities. In par- ticular we have taken the example of an earth-penetrating weapon which would be equipped with a powerful thermonuclear-driven precursor shaped-charge, fol- lowed by a main charge that would be accelerated and driven into the ground by the momentum supplied by a 100 tons thermonuclear explosion at the back of it. The main conclusion stemming from considering this more speculative pos- sibility is that the ancillary technological advances required in order to make it feasible are similar to those implied by the second possibility, i.e., considerable advances in the realms of materials science, micro-electromechanical systems’s engineering, and nanotechnology. Since these potential advances significantly overlap with the requirements of many other future weapons, both conventional and nuclear, it is therefore possible that an important reason for considering an improved version of the B61-11 is simply to develop these technologies as they will be needed, for instance, to weaponize fourth generation nuclear explosives. # [PDF] The B61-based "Robust Nuclear Earth Penetrator:" Clever ... Adobe PDF - View as HTML Andre Gsponer Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: isri@vtx.ch arxiv.org/pdf/physics/0510052

milstar: http://arxiv.org/PS_cache/physics/pdf/0510/0510052v5.pdf Consequently, if the objective of a weapon is to destroy underground targets by means of shockwaves, the obvious idea is to detonated it under the surface of the ground. This enables a reduction by a factor of about 10 to 15 in the explosive yield of the weapon. Indeed, even for a rather shallow burial (about 0.6 meter), the maximumenergy coupled to the ground by a 0.5 kt fissionexplosionwas computed to be already about 30% of the total yield, an estimate that was confirmed by a nuclear test conducted at the Nevada Test Site [4, p.899]. Therefore, nearly 100% coupling is achieved when a warhead is detonated at a few meters below the ground, so that the explosion of an earth penetrating warhead (EPW) with a yield \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ of about 0.5 Mt can in principle have the same destructive power as a 5 Mt above \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ground detonation. \\\\\\\\\\\\\\\\\\\\\\\\\ The military rationale for developing and producing the B6111 (that is the 11th modified version of the B61 gravity bomb whose development started in 1961) was therefore to provide a replacement for the 9 Megatons B53 that was intended to be used for destroying buried command centers and other underground targets. Moreover, since the precision and the flexibility of the delivery of the B61 were substantially greater than those of the B53, it was felt that these advantages would more than compensate for the lower yield of the B61, which is at most of 340 kt. The B6111 began entering service in 1997. It was therefore the first “new” nuclear weapon to enter into the arsenal of a declared nuclear power after the conclusion (in 1996) of the negotiations of the Comprehensive Test Ban Treaty, during which the United States stated that the B6111 would be the last weapon to enter into its nuclear arsenal.


milstar: On 9 May 2003 a committee of the United States Senate passed a bill to that effect, calling for the development of a “bunker buster” bomb to be called the robust nuclear earth penetrator (RNEP). Part of the reasons are of a militarytechnical nature: Even though the B6111 can bury itself 3–6 meters underground before detonation, it cannot destroy targets at depths or distances much larger than 30–100 meters below or away from the point of explosion. This is because shockwaves propagating through a solid medium are much less destructive that those propagating through air [5, Chap.6]. For example, if the minimum assured lethality range of the B6111 is 30–100 m, the corresponding range for a RNEP version able to bury 30 m deeper into the ground [6, 7, 8, 9] will be 60–130 m. Therefore, contrary to certain claims, it seems impossible that a RNEP based on the B6111 could crush targets 300 m underground. This is because extending the penetration range of the B6111 by a factor of 5–10, that is from 3–6 m to about 15–30 m in reinforced concrete or solid rock, is already a considerable technical challenge,

milstar: In Sec. 5 we assess the scientific feasibility of a RNEP able to bury the B617 warhead 30 meters into concrete, or 100 to 150 meters into earth. ############################################### Four general possibilities are analyzed: (i) maximizing the weight and length of the penetrator; (ii) maximizing the velocity of the penetrator; (iii) using conventional penetration aids such as a precursor shapedcharge jet; and (iv), assuming that radically new types of compact nuclear explosives will become available in the next few decades, speculations are made on hypothetical new designs which could provide a technically more attractive solution than the three previous possibilities. http://arxiv.org/PS_cache/physics/pdf/0510/0510052v5.pdf

milstar: 3 The penetration capability of the B6111 The present earth penetrating version of the B61, i.e., the B6111, has a length L = 3.7 m, and a maximum diameter d = 0.33 m. Its total weight isM  550 kg, about 200 kg more than the B617, the model of which the B6111 is a modified earthpenetrating version. Consequently, at a terminal velocity of 0.5 km/s, Eq. (17) gives a penetration into concrete of 2.4 m, i.e., D/L  0.65,15 in agreement with the advertised capability of the B6111. How could this penetration capability be increased? Obviously, one could increase the impact velocity by fitting the bomb with a rocket engine, and possibly reach the maximum set by the strength of the bomb casing, i.e., Eq. (15) where one has to divided by 3 to be consistent with Eq. (17). For example, if the bomb’s casing is made out of steel so that Yp  1 GPa,16 that maximum would be D  4.2Lсeff/сFe, i.e., approximately 5 m in concrete — quite far away from the goal of 30 m penetration in concrete or hard rock mentioned for the RNEP in the general scientific literature [7, 8, 9]. http://arxiv.org/PS_cache/physics/pdf/0510/0510052v5.pdf

milstar: Moreover, the same approach was already taken in the 1950s for designing earthpenetrating nuclear weapons [29]. For instance, “the uranium guntype Mark 8 bomb (nicknamed ‘Elsie’ for LC, or light case) was almost 3 meter long, 36 cm in diameter, 1,500 kg, and had a yield of approximately 25 kt. (...) The Mark 11 was an improved version of theMark 8, slightly heavier, and according to theNationalAtomicMuseum, ‘able to penetrate up to 6.6mof reinforced concrete, 27 m of hard sand, 36 m of clay, or 13 cm of armor plate,’19 and fuzed to detonate 19There could be an error with the armor plate thickness, which should be more like 38 cm

milstar: In summary, by increasing the impact velocity by a factor of five one is reaching a number of material and engineering limits which are at the forefront of contemporary research and development. If a compromise is made and the earth penetrating weapon is made somewhat heavier and longer than the circa 2,000 kg and 4m we took as a starting point, the resulting weapon could not bemuch lighter and smaller than the design considered in the previous subsection, especially if we take into account the weight and volume of the rocket motor required to increase impact velocity.

milstar: Hardened Shelters vs PGMs While the BLU-109/B and BLU-113/B were widely regarded to be a stunning success in 1991, accounting for hundreds of targets including well hardened HAS, the reality is that many of these targets required multiple hits to penetrate. An attack would see a pair of GBU-24 or GBU-27 pickled with a fixed delay, so that the second round would fly into the hole produced by the first round. Effectively the first round acted as a precursor to expose the inner layers of the shelter carapace, so that the second round could punch through. The penetration performance of any such warhead depends not only on the warhead design features and impact velocity/angle, but also on the strength and thickness of the reinforced concrete or other materials used in the construction of the bunker or shelter. The design of high strength and hardness concrete materials is a science, and not a trivial one either. The concrete composition has a critical impact on its properties, and high strength concretes frequently include additives such as blast furnace slag, fly ash, and sometimes aggregates including very hard materials such as quartz. Tensile strength can be further improved by adding metal wire or whiskers into the mix, graphite fibres or glass fibres. The thickness and type of steel used for the reinforcement mesh will also influence the strength of the material. For comparison typical concrete strengths used in US evaluations of penetrating warheads are 5,000 psi (~35 MPa) and 10,000 psi (~70 MPa), yet many commercial high strength construction concretes provide 13,000 psi (~90 MPa) to 18,000 psi (~124 MPa). Penetrators impacting on concrete typically cause catastrophic delamination and separation of the concrete from the reinforcement mesh, allowing the projectile to punch its way through. For a reinforced concrete to provide high resistance to a penetrating projectile, it must be tough in the sense that it does not disintegrate or fracture when the shockwave produced by the projectile propagates through the material. A century ago long range firepower was delivered by large calibre guns, the biggest typically being in the 11 inch to 16 inch category. These were typically rail mobile or casemated artillery pieces, guns on large warships and coastal defence gun batteries. Such weapons remained as the primary armament of battleships / battlecruisers and a range of fortifications until the late 1940s. What is of interest is that the projectiles fired by these weapons were 1,800 to 2,800 lb in weight, made of high quality hardened steels, and usually cylindrically shaped with an ogival nosecone. In other words, they were not much different in terminal velocity (~500 m/s), shape, size and weight to contemporary large air delivered penetration. Refer Table 2. Projectile Weight [lb] Diameter [in] Penetration Performance BLU-109/B 1,950 14.5 6 ft reinforced concrete 16"/50 Mark 7 - AP Mk.8 (Iowa class BB) 2,700 16.0 30 ft concrete 40 cm/45 Type 94 - APC Type 91 (Yamato class BB) 3,219 18.1 Unknown Table 2. Comparison of BLU-109/B vs 1930s US and Japanese Battleship Gun Projectiles. http://www.ausairpower.net/APA-2008-02.html

milstar: Длина: западный тоннель — 56 978 м, восточный тоннель — 57 091 м. Полная длина, включая служебные и пешеходные ходы́ — 153,4 км. Общая протяжённость пути, проходимого с помощью ТПК — 45 км. Объём извлекаемых скальных пород: 24 млн т (13,3 млн м³, что эквивалентно пяти пирамидам в Гизе). Количество ТПК производства Herrenknecht AG — 4 шт.: пути проходки: два движутся на юг от Амстега к Седруну; два — на север от Бодио к Файдо и Седруну; их применение планируется также на части пути от Эрстфельда до Амстега; полная длина ТПК, включая все необходимое оборудование — 440 м; полный вес — 3 000 т; мощность — 5 МВт; максимальная скорость проходки (в идеальных условиях) — 25—30 м/сут. Окончание строительства: 2016—2017 годы. Полная стоимость: 6,428 млрд $. http://ru.wikipedia.org/wiki/%D0%93%D0%BE%D1%82%D0%B0%D1%80%D0%B4%D1%81%D0%BA%D0%B8%D0%B9_%D0%B1%D0%B0%D0%B7%D0%BE%D0%B2%D1%8B%D0%B9_%D1%82%D0%BE%D0%BD%D0%BD%D0%B5%D0%BB%D1%8C До этого самым длинным железнодорожным туннелем в мире был Сэйкан, соединяющий японские острова Хонсю и Хоккайдо. Его длина – 53,8 км. Второе место занимал туннель под проливом Ла-Манш между Великобританией и Францией - 50 км. Прокладка туннеля Готард обошлась в 9,8 млрд швейцарских франков (10,3 млрд долларов). Через него сможет проходить до 300 железнодорожных составов в день, на скорости в 250 км/ч. В строительстве принимало участие 2500 человек, восемь рабочих погибли. http://www.bbc.co.uk/russian/international/2010/10/101015_switzerland_tunnel.shtml

milstar: http://www.alptransit.ch/en/media/press-releases/detail-en/article/2010/10/15/hauptdurchschlag-im-laengsten-eisenbahntunnel-der-welt/ The Gotthard base tunnel consists of two parallel single-track tubes, which are connected every 325 m by 40 m galleries. ############################################################################## Overall, the tunnel system of the Gotthard base tunnel, including all tubes, shafts and galleries, measures 151.8 km t.e. 2*57 km =114 km po 6-8 metrow w diametre + 38 km soputswujuschix perexodow .swjazok za 10 mlrd $ 1140 km eto 100 mlrd $ w cenax rabochej sili Schwejzarii ############################################ 1140 km eto 2000 schaxt cherez 570 metrow ( 1 boegolowka po 475 kt Trident ili MX pri popadanii po seredine mezdu dwumja ne wiwidoit iz stroja ni odnu) 2000 schacht za 3 trln rub pri sowokupnom VVP Rossii za 2011-2020 550 -600 trln rub ############################################################## i bjudzete MO w standartax 1989 goda (77.2mlrd rub ot VVP 944 mlrd rub ili 8.2%) 45 -50 trln rub za 2011 -2020 god wpolne realistichno ################### Dlja srawnenija - Sobjanin xochet na razwitie Moskwi 15 trln rub ,socialnoe rassloenie Moskwi i Rossii rekordno VRP w Moskwe 804 000 rub w god na cheloveka ili 40 200 $ po PPP wo Franzii - 33100 $ w Rossii -15900 $ w SPB -310 000 rub ili 15500$ http://www.youtube.com/watch?v=8M4gAOg9V6o&feature=fvsr http://www.youtube.com/watch?v=k9xcs2uU1pQ

milstar: La mansch tunnel - 8 миллионов ,51 km Gottard -13 mln кубометров породы Krasnojarskaya GES -6 mln кубометров betona Sajano -Schuchenskaja -9 mln кубометров betona http://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D1%8F%D0%BD%D0%BE-%D0%A8%D1%83%D1%88%D0%B5%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%93%D0%AD%D0%A1 Tri yschelja Kitaj 20 mln kub metr betona ,stoimost stroitelstwa 10 mlrd $ http://ru.wikipedia.org/wiki/%D0%93%D0%AD%D0%A1_%D0%A2%D1%80%D0%B8_%D1%83%D1%89%D0%B5%D0%BB%D1%8C%D1%8F

milstar: Компания “Херренкнехт АГ” (Германия) производит тоннелепроходческую технику для прокладки тоннелей различного назначения в любых гидрогеологических условиях. По всему миру продано более 1000 микротоннелепроходческих установок Herrenknecht диаметром до 4,2 м, а также около 350 тоннелепроходческих комплексов диаметром более 4,2 м. В Москве эксплуатируется около 35 микротоннелепроходческих установок компании “Херренкнехт АГ” диаметром от 400 до 2 000 мм, а также ~15 установок в других городах России. Кстати, в Москве на строительстве двухъярусного Серебряноборского тоннеля работал немецкий проходческий щит Herrenknecht S-250 диаметром 14,2 м. Диаметр получаемых тоннелей может варьироваться от 1 до 19 метров. Самый большой диаметр, 19 м[2], у четырёх проходческих щитов, используемых на строительстве железнодорожного Готардского тоннеля в Швейцарии. http://ru.wikipedia.org/wiki/Проходческий_щит Мировой рекорд скорости проходки - 1250 метров тоннеля в месяц - поставлен серийным щитом КТ-1-5,6 на участке строительства перегонного тоннеля в Ленинграде на участке от "Пионерской" до "Удельной" в 1981 году. В 70-х - 80-х годах эти щиты считались одними из самых совершенных в мире. http://metro.molot.ru/s_tbm.shtml

milstar: МЫ МНОГО, ЧТО МОЖЕМ Тоннельная ассоциация России - это мощный интеллектуальный и технический потенциал http://www.tar-rus.ru/public/articles/detail.php?id=54 В 80-е годы прошлого столетия по решению ЦК и Совмина создали объединение «Горноспецстрой» с численностью около 9000 сотрудников, в функции которого входило возведение закрытых специальных объектов, по линии гражданской обороны в пределах Москвы и за кольцевой дорогой, несколько лет наш трест принимал участие в строительстве убежищ и в реализации других проектов. В 1986 г. за разработку и внедрение метода «стена в грунте», малоизвестный в то время в России, я стал Лауреатом государственной премии СССР. 608-81-72 Факс: (495) 607-32-76 107078, Москва ул. Новорязанская, 16, подъезд 3, оф. 80 http://rus-tar.ru/about/

milstar: Issues.–A major question is whether the space-based rocket could reach the booster before burnout. Basing at altitudes of about 400 kilometers has been discussed. Soviet SS-18 rockets burn out in about 300 seconds at an altitude of about 400 km. If the satellite platforms carrying the interceptor rockets were based at an orbital altitude of about 400 km, an interceptor could travel horizontally for up to 300 seconds to reach a booster if it could be launched at the same time that the booster was. If the platform is based at a higher altitude, the interceptor will have to shoot down to reach the booster and will not have as far a horizontal range. If the interceptors had a burnout velocity of 10 km/sec,18 each could travel about 3,000 km in 300 seconds, http://www.princeton.edu/~ota/disk2/1985/8504/850409.PDF str .156 Aktivnaya zaschita bunkerow ################# Another possible technique is the “swarmjet” proposal. A large number of small rockets is fired in the direction of an incoming RV towards a region 50 m in diameter at a range of 1 km from the defended site. If str .157 Sowrmennij bunker SS-19/18 iwderizwaet 475 KT Trident D-5 na rasstojanii 200 metrow ############################################################## S pomoschju malenkix protivoraket s wisokim G (200 -1000) i 1 kt Yabch(17-18 kg) mozno ynichtozit ili prinudit k samopodriwu Yabch protivnika na rasstojanii minimum 200 metrow ###################################################### 200 g bilo dostignuto w MARV Trident Mark 500 w 70 godax Predpolozitelno na distanzii 0.2 km 1 km mozno dostignut bolche ... ------------------------------------------------------------------------------------ (postarajus ytochnit') However, the attacking warhead may be salvage-fused to detonate when intercepted, and since intercepts will take place relatively close to the defended object, a “swarmjet” defense would only be suitable for defending hardened targets able to survive a nearby nuclear explosion. Ykreplennie bunkeri ss-18/19 widerziwajut do 30 000 psi ... Overall, the state of the art of terminal interceptors, with the associated sensors and battle management systems, is closer to practicality than many other BMD technologies. However, these technologies at present are best applied to hardened targets. Discrimination is easier because intercepts can be delayed, and a far smaller volume of space would have to be covered. Near-term technology may be capable of defending hardened targets against a significant fraction of incoming RVs. However, the detonation resulting from the first intercept (in case the target were salvagefused, giving a nuclear explosion upon impact) could make subsequent intercepts difficult. These problems could be mitigated by hardening sensors and by providing high levels of redundancy.

milstar: А затем, развивая идею, спроектировал, освоил производство и успешно испытал активную защиту шахтных пусковых установок стратегических ракет. Невероятно, но активная защита Сергея Непобедимого гарантированно разрушала ядерную боеголовку атакующей ракеты до того, как та успевала взорваться. Фактически отечественные ШПУ с «Воеводами», «Стилетами» и «Тополями» были бы сегодня абсолютно неуязвимы для самого высокоточного оружия, в том числе ядерного. Но на вооружение эти уникальные комплексы, как и танковые «Арены», приняты не были. Подробнее: http://nvo.ng.ru/notes/2011-08-19/9_nepobedimyi.html

milstar: AMaRV flew several times in the late 1970s and early 1980s and demonstrated profiles similar to those a CAV would fly. Lockheed-Martin had two programs, MSTART and High Performance Maneuvering Reentry Vehicle (HPMARV) which were directly related to CAV. HPMARV, in particular, had detailed computational fluid dynamics (CFD) and wind tunnel analyses, even though the vehicle never flew. Boeing and Lockheed-Martin were both provided small amounts of funding over the next few years to mature their CAV designs and recommend employment, test and acquisition options. Two (of three attempts) successful Missile Technology Demonstration (MTD) tests were made using a modified Pershing reentry vehicle (RV) to deliver Eglin AFB-designed unitary penetrators in White Sands Missile Range. MTD-1 penetrated 31 feet into 2500 pounds per square inch (psi) weathered granite after impacting at over 3000 feet per second (fps). For reference, hardened concrete measures 5000 psi. MTD-1's INS/GPS navigation system performed flawlessly. MTD-2 had a launch vehicle malfunction resulting in launch vehicle destruction. The larger MTD-2 unitary penetrator was so tough, however, it was recovered and used successfully on MTD-3. Using Young's equation and ignoring some penetrator physics limits, penetration depths of 40-60 feet into 5000 psi hardened concrete can be calculated using an 800-1000 lb penetrator at 4000-4500 feet per second impact velocity. http://www.globalsecurity.org/space/systems/x-41-cav.htm

milstar: По словам Герберта Ефремова, ракетные шахты – это уникальные сооружения, которые имеют высочайшую степень защищенности. Когда проводились исследования на стойкость и защищенность этих сооружений, то специалисты, которые этим занимались, разрушить эти шахты не смогли. Такие сооружения, особенно если их значительное количество, а не единицы, всегда сохраняют способность к нанесению ответного удара. http://rusk.ru/st.php?idar=423246

milstar: http://i-korotchenko.livejournal.com/297673.html#comments Шахтная пусковая установка МБР РС-18

milstar: Такими вот бункерами, напоминающими огромные бетонные грибы, нынче усеяна вся Албания – их насчитывается более 600 тыс.! При численности населения в 3 млн. получается по пять человек на бункер Подробнее: http://www.ng.ru/style/2011-09-22/8_albania.html Wpolne realno ,osobenno esli ychest nalichie sowremennoj texniki 50 psi bunker ( kanal. truba 1.5 metra s tolschinoj stenok 15-20 sm) zaritaja w zemlju widerziwaet 1 megatonn yabch na ydalenii ot epicentra 1100 -1200 metrow Podawljuschee bolschinstwo naselenija ne predstwaljut strategicehskoj celi ( ne wozdi gos-va i glawkomi armii ) #############################################################################



полная версия страницы