Форум » Дискуссии » Bazirowanie tipa MX,Bunkeri » Ответить

Bazirowanie tipa MX,Bunkeri

milstar: MPS ("Mobile Protective Shelters"). Согласно концепции MPS, для размещения 200 МБР предполагалось создать 4600 стартовых площадок-укрытий для горизонтального размещения ракет, рассредоточенных по окружности большого диаметра. Ракета должна была скрытно перемещаться из укрытия в укрытие по случайному закону. Уровень защищенности укрытий должен был быть таким, чтобы обеспечивать вывод из строя только одного укрытия одной атакующей боеголовкой противника. При получении сигнала на пуск крыша укрытия раздвигалась, и ракета, поднявшись в вертикальное положение с помощью системы специальных домкратов, стартовала В июне 1979 года началась полномасштабная инженерная проработка ракеты MX с основным видом базирования в соответствии с концепцией MPS. Однако, в ходе работ выяснилось, что выбранный вид базирования требовал не только больших финансовых затрат (37 млрд. $), t.e. 1.5 % WWP w aktualnix cenax . Wpolne dopustimo ( VVP Rossii w 2010 2209 mlrd $ ,esli za 33mlrd $ mozno w yslowijax Rossii sozdat podobnoe bazirowanei -to eto neobxodimo rassmotret) GDP USA w 1979 - 2562 mlrd $ ( w cenax 2005 -5855 mlrd $) w 1989 -5482 mlrd $ (w cenax 2005 -7885 mlrd $ ,SSSR-1989 -2350 mlrd $ discounted CIA ev) w 2005 -12638 mlrd $ Тогда же были развернуты работы по новому варианту базирования, т.н. ”плотной упаковки” - CSB ("Closely Spaced Basing", она же “Dense Pack”). В соответствии с этой концепцией предполагалось строительство сверхукрепленных шахт (рассчитанных на избыточное давление во фронте ударной волны более 700 кгс/см2) всего в 550 метрах друг от друга. Идея заключалась во взаимоуничтожении атакующих боеголовок противника и гашении ударных волн ядерных взрывов, что позволило бы уцелеть основной части ШПУ и произвести ответный запуск. Впрочем, быстро стало ясно, что концепция CSB основана на чрезвычайно сомнительных допущениях. http://rbase.new-factoria.ru/missile/wobb/mx/mx.shtml 700 кгс/см2 -eto 10 000 psi . ili 700 atmosfer ili dawlenie na glubine 7 km Bunerbuster 13 tonn (s B-2) probiwaet 8 metrow 10 000 psi krepkost granita -20 000 psi specialnie materiali dlja bunkerow imejut bolee 100 000 psi ,Iran raspologaet materialami 30 000 - 40 000 psi .Rossija ochewidno toze Твердотопливная МБР подвижного подземного базирования в 23 сосредоточенных по кругу шахтах для каждой ракеты (т.н. «ипподромный» - Race-track – тип базирования), 1979 г. Работы прекращены в 1980 г. http://www.militaryparitet.com/nomen/usa/rocket/data/ic_nomenusarocket/4/

Ответов - 82, стр: 1 2 3 4 5 All

milstar: [BR]http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%B2%D0%B7%D1%80%D1%8B%D0%B2

milstar: http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%B2%D0%B7%D1%80%D1%8B%D0%B2 smotri dejstwie nazemnogo wzriva 1 mt glubina voroniki -40-50 metrow zaschitnoe sooruzenie wozmozno ######################### 1. w odnorodnom granite na glubine 100-200 metrow s amortizaciej 2. 300 -400 metrow w gornoj wirabotke s krepleniem ,bez amortizacii 3.w skalnoj porode pod sloem mjagkogo grunta 200 metrow na glubine 300 metrow 4. w mjagkow grunte na glubine 300-900 metrow Po bunkeram Glawkoma mozno ozidat neskolko serij po .475 mt w kazdoj po 10-20 yabch ############################################################# dlja moschnostej w rajone 0.5 mt i wische radius dejstwija w 2 raza ywelichiwaetsja pri ywelicheniee moschnosti minimum w 10.5 raz t.e. 500 -600 metroww granite s ammortizaciej potrebuet 1 gigatonn ####################################### 700-800 metrow w granite s ammortizaciej -10 gigatonn Podobnaja attaka wozmozna ,no malorealna 26.5 tonni = 100 megatonn wes summarnij zapas moschnsoti yabch w pike w 80 w rajone 10 gigaton (65000 yabch )

milstar: tam ze http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%B2%D0%B7%D1%80%D1%8B%D0%B2 graniza voronki ot nazemnogo(kontaknotog wzriwa 1mt) w skale radius 100 metrow pri glubine 40 metrow KVO MX 91 metr ,budet ylutchenna (tochnost inerzionalnogo datchika AIRS 1 metr ,ostalnaja oschibka -rulevoe yprawlenie) .Trident E6 ozidaetsja 10-15 metrow na glubine 40 metrow dawlenie 200 MPA ( 2000 atmosfer ili okolo 30 000 psi ,na dne Marianskoj vpadini -1100 atm) Poroda smeschaetsja w storonu na 5 metrow s yskoreniem w 1000 g


milstar: 1 megatonn nazemnij/kontaknij cherez 0.15 sek woronka radiusom 128 metrow *47 metrow .Wsego wibroschenno 300 000 kub .metrow 0.5-0.6 mln tonn grunta (sudja po plotnosti -eto jawno ne skalnaja poroda) na ego wibros 0.1% energii wzriwa

milstar: 1000 metrow pri 1 megatonn kontaknom wzriwe ( wozduschnij drugie resultati) razruschenie Z/B trubi pod Zemlej 1.5 metra tolschinoj 20 sm 1.2 -1.15 MPA = 12 -15 atmosfer = 220 -230 psi chtobi dannoe dawlenie ponizilos w 2 raza ,neboxodimo ydalenie na 1226 metra wmesto 1000 metrow Iz podobnix trub wpolne wozmozno soorudit bunker samostojatelno ############################################

milstar: The government is believed to have about 40 underground shelters at various places in the US, many built into mountainsides within about 100 miles of Washington. Some of the sites are known to have multiple chambers, up to 50ft wide and 100ft high that could be used for anything up to and including a base for an emergency air force. One is Mount Weather in Virginia, where congressional leaders - including the House Speaker, Dennis Hastert, third in line to the presidency - were taken in the confused hours following the attacks. It is described as a "small city", built into granite, behind a 5ft thick door guarding vast quantities of office space, room to store the nation's art treasures, sleeping accommodation for several thousand people, a private reservoir, and a crematorium. http://www.guardian.co.uk/world/2002/mar/02/usa.matthewengel1

milstar: According to diagrams and notes given to me in the late 1990s by SAC senior officers, the Yamantau command center is inside a rock quartz mountain, about 3,000 feet straight down from the summit(900 metrow) . It is a wartime relocation facility for the top Russian political leadership. ################################## [BR]http://www.thelivingmoon.com/45jack_files/03files/Yamantau_Mountain_Complex_Russia.html [BR]http://en.wikipedia.org/wiki/Mount_Yamantaw . It stands at 1,640 metres (5,381 ft) and is the highest mountain in the southern Urals. Along with Kosvinsky Mountain (600 km to the north), it is suspected by the United States of being a large secret nuclear facility and/or bunker.[1] The closed military town of Mezhgorye (Russian: Межгорье) is situated nearby. As late as 2003, Yamantaw was not yet fully operational.[1] “ The only potential use for this site is post-nuclear war.[2][3] ” —Rep. Roscoe Bartlett Large excavation projects have been observed by U.S. satellite imagery as recently as the late 1990s, during the time of Boris Yeltsin's government after the fall of the Soviet Union.[1] Two garrisons, Beloretsk-15 and Beloretsk-16, were built on top of the facility, and possibly a third, Alkino-2, as well, and became the closed town of Mezhgorye in 1995. They are said to house 30,000 workers each

milstar: The Defense Department's Nuclear Posture Review for 2001 laments that the B61-11 “cannot survive penetration into many types of terrain in which hardened underground facilities are located.” This is a generous analysis: the “terrain” referred to is the hard rock under which valuable targets are almost always buried. When dropped from a height of 40,000 feet, the B61-11 was able to penetrate three meters at most into the Alaskan tundra, and not at all into hard rock (that is, without self-destructing). http://www.harpers.org/archive/2004/12/0080324 The inadequacy of the B61-11 is due not to a particularly poor construction but rather to the basic limitations of bomb-making steel. In the test drops performed in Alaska, the B61-11 reached roughly 300 meters per second at impact. In order to penetrate reinforced concrete, it would need to be traveling at approximately 500 meters per second. At around 900 meters per second, the shock wave generated by the missile's slamming into the ground will deform it severely; at 1,200 meters per second, the missile will in most cases break into pieces. To penetrate granite—ubiquitous in mountainous bunkers, and believed to be common above any truly valuable bunker—a penetrator would have to attain upward of 3,000 meters per second, at which speed it would certainly be crushed. Robert Nelson of Princeton University has demonstrated that because of the limitations imposed by the yield strength of the steel used in casings, no bunker buster can ever go fast enough to penetrate reinforced concrete deeper than five times its length without destroying itself in the process; and even this number is too high for any real-world scenario. What is more, the length of the bomb cannot be increased much, for two reasons: there are no aircraft capable of carrying a weapon much longer than the ones that are currently deployed; and as length increases, so does the tendency of the bomb to snap in two on impact.

milstar: Esli zarjad zalozen gluboko w skale iz suxogo granita to isparenie 60 tonn granita na kilotonnu moschnosti splawlenie 300 tonn na kilotonnu str.19 tabl .3 [BR]http://geology.er.usgs.gov/eespteam/pdf/USGSOFR01312.pdf Plotnost granita 2700 kg/m^3 http://www.spservis-nn.ru/plotnost-tverdyh-materialov/

milstar: http://www.infiniteunknown.net/wp-content/uploads/2009/10/gps-guided-bunker-buster-bomb.jpg dannie po 13 tonn bunker buster MOP zawischenni ? w swete wiskaziwanij (smotri wische ) the B61-11 was able to penetrate three meters at most into the Alaskan tundra, and not at all into hard rock (that is, without self-destructing). .... Robert Nelson of Princeton University has demonstrated that because of the limitations imposed by the yield strength of the steel used in casings, no bunker buster can ever go fast enough to penetrate reinforced concrete deeper than five times its length without destroying itself in the process; ########################################## and even this number is too high for any real-world scenario ####################################### Dlina MOP 6 metrow ,wes 13 tonn ######################## B61-11 was able to penetrate three meters at most into the Alaskan tundra ################################################# Dannie po MOP porazenie bunkera 60 metrow i 5000 psi(350 atm) reinforced konkrete T.e. on mozet proniknut s dlinoj 6 metrow na glubinu ? ... 6-10 metrow w ysilennom z/b do 350 atm ... potom wzriwaetsja 2700 kg wzriwschatki ?

milstar: GBU-28 The GBU-28, a 4,700-lb deep-penetrator LGB, was not even in the early stages of research when Kuwait was invaded. The USAF did not ask industry for ideas until the week after combat operations started. Its rapid development and combat delivery were impressive. The bomb was fabricated starting on 1 February, using surplus 8-inch artillery tubes. The official go-ahead for the project was issued on 14 February, and explosives for the initial units were hand-loaded by laboratory personnel into a bomb body that was partially buried upright in the ground outside the laboratory in New York. The first two units were delivered to the USAF on 16 and 17 February, and the first flight to test the guidance software and fin configuration was conducted on 20 February. These tests were successful and the program proceeded, with a contract let on 22 February. A sled test on 26 February proved that the bomb could penetrate over 20 feet of concrete, while an earlier flight test had demonstrated the bomb's ability to penetrate more than 100 feet of earth. ################################################### Kakogo ? s 5000 psi ? The first two operational bombs were delivered to the theater on 27 February - and were used in combat just before the cease-fire. http://es.rice.edu/projects/Poli378/Gulf/gwtxt_ch6.html#GBU-28

milstar: http://www.fas.org/programs/ssp/nukes/new_nuclear_weapons/loyieldearthpenwpnrpt.html It is straightforward to show, however, that the maximum penetration depth is severely limited if the missile casing is to remain intact. One can make reasonably accurate estimates of the penetration depth based on the well-developed theory of "long-rod penetration." The fundamental parameter R is the ratio of the projectile ram pressure to the yield strength of the material.3 The target material yields, and penetration occurs, when R is greater than one. For a steel rod to penetrate concrete, the minimum velocities for penetration is about one half a kilometer per second (1100 miles per hour). For ductile materials, the kinetic energy lost from the penetrator can deform the target and dig out a penetration crater. Fundamentally, however, the depth of penetration is limited by the yield strength of the penetrator — in this case, the missile casing. Even for the strongest materials, impact velocities greater than a few kilometers per second will substantially deform and even melt the impactor. An earth-penetrating nuclear weapon must protect the warhead and its associated electronics while it burrows into the ground. This severely limits the missile to impact velocities of less than about three kilometers per second for missile cases made from the very hardest steels. From the theory of "long-rod penetration," in this limit the maximum possible depth D of penetration is proportional to the length and density of the penetrator and inversely proportional to the density of the target. The maximum depth of penetration depends only weakly on the yield strength of the penetrator.4 For typical values for steel and concrete, we expect an upper bound to the penetration depth to be roughly 10 times the missile length, or about 100 feet for a 10 foot missile. In actual practice the impact velocity and penetration depth must be well below this to ensure the missile and its contents are not severely damaged. Given these constraints, it is simply not possible for a kinetic energy weapon to penetrate deeply enough into the earth to contain a nuclear explosion.

milstar: Рассмотрим последовательность эффектов воздействия наземного взрыва на шахтную пусковую установку, рассчитанную на ударную волну давлением ~6—7 МПа и попавшую в эти самые тяжёлые для неё условия. 7 mpa eto 70 atmosfer ili 1000 psi Rjad bunkerow ss-19 i ss-18 bil ykrepelen do welicjhini 10 000 15 000 psi (700 -1000 atmosfer) DAwlenie na dne Maianskoj vpadini 11000 atmosfer Sejtshas est varianti do 2000 atmosfer (smotri wischew thread) . Prjamoe popadanie 1 mageatonn kontaknto nad bunkerom w skalnoj porode .Glubina bunkera 100-200 metrow s amortizaciej/podweskoj/ Произошёл взрыв, практически мгновенно доходит радиация (в основном нейтронная, суммарно порядка 105 — 106 Гр или 107 — 108 рентген), через ~0,05 — 0,1 с бьёт по защитной крышке воздушная ударная волна и сразу накатывает вал огненной полусферы. Ударная волна генерирует в почве сейсмический удар, почти одномоментно с воздушной волной окатывающий всю шахту и смещающий её вместе с породами вниз, постепенно ослабляясь с глубиной; а вслед за ним через долю секунды приходят сейсмические колебания, образованные самим взрывом во время воронкообразования, а также отражённые волны от слоя скальных материковых пород и слоёв неоднородной плотности. Шахту около 3 секунд трясёт и несколько раз бросает вниз, вверх, в стороны, максимальные амплитуды колебаний могут доходить до полуметра и более, с ускорениями до нескольких сотен g; ракету от разрушения спасает специальная система амортизации. Одновременно сверху на крышу шахты в течение 3—10 секунд (время зависит от мощности взрыва) действует температура 5—6 тысяч, а в первые полсекунды до 30 тысяч градусов, затем довольно быстро падающая c подъёмом огненного облака и устремлением холодного наружного воздуха в сторону эпицентра. От температурных воздействий оголовок и защитная крышка скрипят и трещат, поверхность их оплавляется и частично уносится плазменным потоком. Через 2—3 с после взрыва давление плазмы в районе шахты снижается до 80 % от атмосферного и крышку несколько секунд пытается оторвать подъёмная сила до 2 тонн на квадратный метр. В довершение сверху обрушаются грунт и камни, выброшенные из воронки и продолжающие падать порядка минуты. Радиоактивный и разогретый до слипшести грунт образует нетолстый, но зато сплошной навал (кое-где с образованием озёр из расплавленного шлака), а крупные камни могут нанести крышке повреждения. Особо крупные обломки, как метеориты, при падении могут выкопать небольшие кратеры[лит 5](С. 27), но их относительно немного и вероятность попадания в шахту мала. Ни одна наземная постройка таких воздействий не переживёт и даже такие прочные сооружения, как мощные железобетонные казематы (ДОТы и форты времён Первой и Второй мировых войн) частично или полностью разрушаются и могут быть выброшены со своего места скоростным напором воздуха. Если ДОТ окажется достаточно прочным и устоит от разрушения, люди в нём всё равно получат травмы от колебаний с вибрациями, поражение слуха, контузии и смертельные лучевые поражения, а горячая плазма может проникнуть внутрь через амбразуры и незакрытые проходы. Давление волны на входе внутрь амбразуры или воздуховодного канала (давление затекания) в течение 0,1—0,2 с может составить около 1,5 МПа[лит 6](С. 34 http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%B2%D0%B7%D1%80%D1%8B%D0%B2

milstar: Tam ze W grunt na nachalnom etape pri kontaknom wzriwe 1 megatonni peredaetsja wsego 7 % wsej energii ,no potom ona padaet do 2.5% (Pri wzriwe obichnogo VV -50%) Voronka w skale suxogo granita glubina 40 metrow ,radius =100 metrow na glubine grunt smeschaetsja na 5 metrow s yskorenijami 1000 g dawlenie 2000 atmosfer = 200 mpa 96.5% wsej energii 1 megaton wzriva w ognennoj polusfere 220 metrow ot epicentra w skalnom grunte na powerxnosti wiziwajut schpu 50 mpa= 500 atmosfer = 7000 psi 350 metrow - 12-14 mpa 120-140 atmosfer

milstar: Trident II Missile Launch From A Submarine http://www.youtube.com/watch?v=nJm10fLH67c&feature=related

milstar: The frozen soil proof test in Alaska in 1996 was cancelled due to an aircraft system failure on the B-2. The test was rescheduled for march 1998, when two B61-11s were successfully dropped by a B-2 bomber. Altogether, a total of 25 drop tests were conducted from the B-2, B-52, B-1, and F-16. The drops tested the B61-11 earth-penetration capability into sand, hardpan, compact soil, rock, concrete and permafrost, indicating a wide geographic range for potential targets. [BR]http://www.nukestrat.com/us/afn/B61-11.htm The introduction into the stockpile coincided with the B-2 achieving nuclear Initial Operational Capability (IOC) and replacing the B-1 in the SIOP-98 warplan. Air Combat Command (ACC) informed the Defense Science Board Task Force on Nuclear Deterrence that "integration of the B61/11 [sic] has introduced a vastly new means of holding an enemy's buried, hardened and underground high-value targets at risk." Approximately 50 B61-11s were produced. The frozen soil proof drop tests conducted in Alaska in March 1998 suggests that the earth-penetration capability of the B61-11 is limited. During the test, two B61-11 shapes were dropped from a B-2 bomber at 8,000 feet. The two shapes hit the ground some 45 feet (15 meters) from each other. The Air Force said the B61-11 only proved capable of penetrating some 6-10 feet (2-3 meters) into the frozen soil. At best the weapon would penetrate 15-25 feet (5-8 meters). A photo taken of the retrieval of one of the bombs in Alaska suggests the penetration depth was around 18 feet (6 meters). . One year later, in December 2001, the Bush administration's Nuclear Posture Review informed Congress that the capability of the B61-11 was inadequate and incapable of holding at risk some deep and hardened targets: The B61-11 "cannot survive penetration into many types of terrain in which hardened underground facilities are located. Given these limitations, the targeting of a number of hardened, underground facilities is limited to an attack against surface features, which does not does not provide a high probability of defeat of these important targets."

milstar: Naslednik B61-11 moschnsot wische do 1.2 megatonn Robust Nuclear Earth Penetrator (RNEP). http://www.nukestrat.com/us/afn/B61-11.htm

milstar: RNEP would not be effective at destroying the deepest or widely separated bunkers. The seismic shock produced by the RNEP would only be able to destroy bunkers to a depth of about a thousand feet. Modern bunkers can be deeper than that, with a widely separated complex of connected rooms and tunnels. There are more effective conventional alternatives to RNEP: Current precision-guided conventional weapons can be used to cut off a bunker's communications, power, and air, effectively keeping the enemy weapons underground and unusable until U.S. forces secure them. Sealing chemical or biological agents underground is far more sensible than trying to blow them up. http://www.ucsusa.org/nuclear_weapons_and_global_security/nuclear_weapons/technical_issues/the-robust-nuclear-earth.html

milstar: Penetration by explosive forceConcrete structure design has not changed much in the last 60 years. The majority of protected concrete structures in the US military are derived from standards set forth in Fundamentals of Protective Design, published in 1946 (US Army Corps of Engineers). Various augmentations, such as glass, fibers, and rebar, have made concrete less vulnerable, but far from impenetrable. --------------- Altering the shape of the projectile to incorporate an ogive shape has yielded substantial results. Rocket sled testing at Eglin Air Force Base has demonstrated penetrations of 100 to 150 feet (46 m) in concrete[citation needed] when traveling at 4,000 ft/s (1,200 m/s). http://en.wikipedia.org/wiki/RNEP ?

milstar: GBU-28 3.9 metra*0.36 metra 500 metr/sec penetrazija 7 metrow betona ili 30 metrow grunta (kakogo ?) Uranium mark-11.national atomic museum 3metra *0.36 metra ,wes bolsche 1500 kg 6.6 metrow z/b ,ili 27 metrow hard sand ,ili 36 metr of clay,ili 0.38 metra bronirowoannoj pliti i wzorwatsja 90-120 sek posle penetrazii -25 kt Using the same method one can easily propose a design for a weapon able to break through 30 meters of concrete, i.e., five times more. First, one can replace the steel tube by one made out of a strong tungsten or uranium alloy with densities of ≈ 17 g/cm3 and get this way an effective density possibly as large as 15,000 kg/m3. (For this purpose a tungsten heavy alloy will most probably be preferred because it has similar density and yield strength, but a three times larger elastic modulus E = 360 GPa, than the best uranium alloy [39, 40].) Second, in order to get the desired factor of five increase in effective opacity, one can double the length of the penetrator so that L = 7.8 m, and the total weight becomes 2, 300 × 5 = 11, 500 kg. Will such a design work? Most probably yes, provided the 8-meter-long, 10- ton-heavy penetrator can be delivered and properly guided to the target, which seems possible since its aspect ratio of 7.8/0.36 ≈ 22 is similar to that of modern kinetic-energy antitank penetrators [40]. But what about the deceleration on impact — will it differ from that of B61-11 for which Eq. (19) gave an average value of 6,000 g assuming a penetration D = 2 m? As a matter of fact, no: for a penetration of 30 m Eq. (20) actually gives a mean deceleration of only 400 g. Indeed, the maximum impact pressure, which can be estimated by Eq. (19), does not depend on the penetration depth or the penetrator’s weight, only on its length L so that the mean deceleration is smaller for a greater penetration depth. Moreover, by going to the penetrator’s rest-frame, one sees that the target is always impacting 2 the penetrator with the ram pressure p = 1/2ρt vp , which does not depend on any of the penetrator’s characteristics except velocity. Thus, a warhead that survived penetration after free-fall from a given height, will also work for a heavier and longer penetrator able to penetrate deeper into the ground after falling from the same height.



полная версия страницы