Форум » Разное » Астрономия » Ответить

Астрономия

milstar: SN 2006gy: самая яркая сверхновая http://www.astronet.ru/db/msg/1221962 Авторы и права: Рентгеновские лучи: НАСА / Рентгеновская обсерватория Чандра, Натан Смит, Вейдонг Ли (Калифорнийский университет в Беркли) и др.; Инфракрасный диапазон: Ликская обсерватория/Калифорнийский университет в Беркли/ Дж.Блум, К. Хансен Перевод: Д.Ю.Цветков Пояснение: Взрыв звезды, занесенный в каталог как сверхновая SN 2006gy, можно увидеть на этом широкоугольном изображении (слева) галактики NGC 1260, в которой произошла вспышка, и на увеличенном виде области около ядра галактики (вверху справа). Действительно, если учесть, что расстояние до сверхновой составляет около 240 миллионов световых лет, ее светимость оказывается гораздо выше, чем у всех ранее открытых сверхновых, и она сохраняла высокую светимость дольше, чем другие сверхновые (по видимому блеску, который в максимуме был равен около 14 звездной величины, эта сверхновая не выделяется среди других - прим. пер.). Наблюдения телескопа Чандра, показанные на нижней правой картинке, позволили определить яркость сверхновой в рентгеновских лучах и могут рассматриваться как подтверждение теории, объясняющей вспышку SN 2006gy взрывом звезды, масса которой более чем в сто раз превосходит массу Солнца. Астрономы предполагают, что в такой исключительно массивной звезде причиной нестабильности, приводящей к разрушению ядра звезды, может стать образование пар вещество-антивещество. В этом случае после взрыва, в отличие от других вспышек массивных звезд, не должно остаться ни нейтронной звезды, ни даже черной дыры. Очень интересно, что аналогом звезды, взрыв которой наблюдался как сверхновая SN 2006gy, в нашей Галактике вполне может быть хорошо известная исключительно массивная звезда Эта Киля. ########## 1.SN2006GY - 10 ^44 джоулей 2. Краката́у - 0.84 *10^18 джоулей Краката́у мощнейшее извержение 1883 года разрушило остров и вулкан. Объём материала, выброшенного взрывом, составил около 18 км³ 200 мегатонн тротила. Supernoma SN2006gy (animation) https://www.youtube.com/watch?v=UZDNK70OMjk #### SN 2005ap was an extremely energetic type II supernova in the galaxy SDSS J130115.12+274327.5. It is reported to be the brightest supernova yet recorded, twice as bright as the previous record holder, SN 2006gy http://mcdonaldobservatory.org/news/releases/2007/1010.html http://iopscience.iop.org/1538-4357/668/2/L99/pdf/1538-4357_668_2_L99.pdf

Ответов - 232, стр: 1 2 3 4 5 6 7 8 9 10 11 12 All

milstar: Заметим для сравнения, что при распаде урана, который имеет место в обычной атомной бомбе и который соответствует лишь частичному превращению вещества в излучение, освобождается в два с половиной миллиона раз больше энергии, чем при сгорании такого же количества угля. Что касается превращения водорода в гелий, который имеет место в водородной бомбе, то при этом освобождается в 10 миллионов раз больше энергии, чем при сгорании такого же количества угля. http://coollib.com/b/292170/read

milstar: Казалось, что решить этот спорный вопрос будет трудным делом, но незадолго до войны 1939 г. успехи атомной химии, в частности, открытия Фредерика и Ирен Жолио-Кюри, пролили некоторый свет на эту проблему. Создание циклотрона, с помощью которого можно было подвергать вещество действию значительных электрических и магнитных полей, позволило частично реализовать в лабораториях условия, аналогичные тем, которые существуют внутри звезд. Действительно, в этих приборах можно было разгонять заряженные частицы до таких скоростей, что они приобретали энергию, сравнимую с той, которую они (в среднем) имеют, находясь в центре такой звезды, как Солнце при температуре в миллионы градусов. Благодаря этому исключительно могущественному средству, ученые могли создать теорию превращений вещества внутри звезд; она была разработана американским астрофизиком Бете. Существенным агентом этих превращений является водород. Окончательным результатом совокупности этих ядерных реакций является превращение четырех ядер водорода в одно ядро гелия.[19] Что касается продолжительности этих процессов, то превращение водорода в гелий, соответствующее потере только 1/14 доли массы (преобразованной в излучение), занимает гораздо меньший промежуток времени, чем то, которые получаются в гипотезах, исходящих из предположения о полном превращении вещества в излучение. Согласно новой точке зрения наблюдаемые нами звезды начали излучать свет лишь несколько миллиардов лет назад. Некоторые звезды — белые и голубые гиганты, масса которых достигает двадцати масс Солнца, — излучают настолько интенсивно, что не могут существовать в таком состоянии более нескольких десятков миллионов лет, так что они, вероятно, прошли пока не слишком длинный «жизненный путь». http://coollib.com/b/292170/read

milstar: Их позиция была уточнена в ходе конференции по идеологическим вопросам астрономии, состоявшейся в 1948 г. в Ленинграде и собравшей несколько сот участников. Одной из отличительных черт этой конференции была научная осторожность. «Мы не имеем в настоящее время какой-либо космогонической гипотезы, которая могла бы быть рекомендована безоговорочно для популяризации», — заявил в своем выступлении профессор К. Ф. Огородников. #####################################


milstar: По мнению этих ученых, превращение излучения в корпускулярную материю может происходить лишь во внутренних и очень горячих областях звезд. Оно не может иметь места в межзвездном пространстве, и его нельзя, разумеется, воспроизвести сейчас в лабораториях. Но вопреки этому мнению именно в лаборатории была осуществлена двадцать лет назад «материализация» фотонов, правда, в рамках иного процесса, чем тот, который рассматривался Доннаном и Штерном. Речь идет об экспериментальных работах Андерсона и супругов Жолио-Кюри. Хотя эти ученые и не занимались построением атома водорода путем столкновения двух фотонов, но, по крайней мере, обнаружили возможность эффективной «материализации» фотонов и создания в лабораториях более сложных атомов из более простых. Первое явление такого рода было обнаружено в лабораториях в результате изучения некоторых свойств так называемых космических лучей. Космические лучи, приходящие на Землю по всем направлениям из пространства, обладают очень большой проницающей силой и содержат в числе других маленькие заряженные частицы, аналогичные электронам, но заряженные положительно — отсюда их название «положительных электронов» или позитронов. Подобные частицы до 1933 г., когда их открыл американский ученый Андерсон, никогда еще не наблюдались. Андерсон, бомбардируя пластинку свинца радиоактивным излучением тория, сумел получить в лаборатории те же позитроны, сопровождаемые отрицательными электронами. Он объяснил появление этих частиц тем, что фотон с большой энергией, излучаемый торием, при встрече с ядром атома свинца превращается в две материальные частицы, обладающие противоположными электрическими зарядами. Таким образом, можно сделать вывод о настоящей «материализации» излучения (именно этот термин использовали супруги Жолио-Кюри, которые повторили подобный опыт во Франции), поскольку фотон, частица излучения, рождает две частицы вещества: отрицательный и положительный электроны. Наоборот, если отрицательный электрон встречается с позитроном, то они могут «дематериализоваться» («аннигилироваться»), превращаясь в два фотона (опыты Ф. Жолио и Ж. Тибо). Супруги Жолио-Кюри пошли гораздо дальше в своих исследованиях и сумели осуществить превращение одних химических элементов в другие, подвергая их воздействию излучения различного рода. В большом числе случаев образованные таким путем новые элементы сразу же распадаются, давая начало третьим элементам (искусственная радиоактивность). Так, например, бомбардируя соответствующим излучением алюминий, эти ученые превратили его в неустойчивый фосфор, который вел себя как радиоактивный элемент в течение нескольких минут, а затем (через достаточно большой промежуток времени) окончательно превращался в кремний. В то же самое время можно было наблюдать образование многочисленных позитронов. Следует обратить внимание на то, что атомное число (соответствующее степени сложности атомной структуры) для получаемого кремния меньше такового для фосфора, но больше атомного числа первичного алюминия. Эти работы, продолженные многочисленными коллективами ученых всех стран, привели к осуществлению превращений всех известных химических элементов. Более того, они позволили создать совсем новые химические элементы. Если русский ученый Менделеев насчитывал в своей периодической таблице 63 элемента, то теперь их известно уже 101. Новые элементы, полученные искусственным путем, неустойчивы и быстро превращаются вследствие радиоактивного распада в элементы с устойчивыми атомами. В заключение можно сделать следующий вывод: 1. Корпускулярная «материализация» излучения осуществляется в лабораторных условиях при превращении фотона в пару «электрон — позитрон» и при этом не требуется ни очень высокой температуры, ни исключительной плотности фотонов. Правда, одна из двух частиц, образующихся из фотона, — позитрон, не входит в состав частиц, образующих атомы, и превращается быстро опять в излучение, если образование позитрона происходит не в пустоте (где он может существовать неограниченное время). Но во всяком случае «положительный электрон» — позитрон — существует и является одной из важных составляющих вещества. С другой стороны, возможна «дематериализация» (аннигиляция) двух противоположно заряженных частиц — электрона и позитрона, столкновение которых приводит к возникновению двух или более фотонов. 2. Из атомов, имеющих простое строение, можно построить более сложные атомы, например атомы кремния из атомов алюминия. Такое превращение в направлении, противоположном обычной радиоактивности («восстановление» вещества), часто сопровождается излучением позитронов. Вспомним, что именно на основании этих исследований, касающихся превращения элементов, Бете создал теорию, объясняющую исключительно большое выделение энергии звездами. В 1939 г., перед второй мировой войной, Ж. Соломон, один из самых многообещающих молодых французских физиков (которого немцы расстреляли 23 мая 1942 г. за его участие в движении Сопротивления), написал относительно понятия материи следующее:[100] «Не следует таким образом приписывать буквальный смысл выражениям — материализация или дематериализация, обозначающим всего-навсего переход из одного состояния материи в другое…».

milstar: Supernova year 86 http://www.nbcnews.com/id/45034405/ns/technology_and_science-space/t/telescopes-solve-supernova-mystery-after-years/ Ancient supernova The ancient supernova, called RCW 86, is about 8,000 light-years from Earth. But while its location was known, much of its details were shrouded in mystery. One enigma is the fact that the star's spherical remains are larger than expected. If the star's exploded guts could be seen in infrared light in the sky today, they would take up more space than the full moon, researchers said. By combining the new data from Spitzer and WISE with existing information from NASA's Chandra X-Ray Observatory and the European Space Agency's XMM-Newton Observatory, astronomers were able to grasp the missing pieces of the puzzle. They found that RCW 86 is a so-called Type Ia supernova, triggered by the relatively peaceful death of a star similar to our sun. This star shrank into a dense star called a white dwarf before siphoning matter, or fuel, from a nearby companion star. The white dwarf is then thought to have exploded in a brilliant supernova explosion. "A white dwarf is like a smoking cinder from a burnt-out fire," Williams said. "If you pour gasoline on it, it will explode." The study showed for the first time that a white dwarf can create a cavity-like empty region of space around itself before exploding in a Type Ia supernova event. The presence of a cavity would explain why the remnants of RCW 86 are so big, researchers said. Yet, Williams and his colleagues were able to rule out the possibility of RCW 86 being a core-collapse supernova. X-ray data from Chandra and XMM-Newton indicated that the object consisted of high amounts of iron, which is traditionally a clear indicator of a Type Ia supernova. Combining these observations with infrared data, the astronomers were able to show that RCW 86 was a Type Ia explosion in a cavity.

milstar: Although at its peak the SN 2006gy supernova was intrinsically 400 times as luminous as SN 1987A, which was bright enough to be seen by the naked eye, SN 2006gy was more than 1,400 times as far away as SN 1987A, and too far away to be seen without a telescope sn2006gy -10^44 joules

milstar: о «вспышке 1987 года». Это была первая сверхновая со времен Кеплера в 1604 году, видимая невооруженным глазом (SN 1604 — последняя сверхновая, зафиксированная в нашей Галактике). Наблюдения позволили получить массу информации о сверхновой 1987A, что дало возможность существенно продвинуться в понимании физики взрывов звезд. Благодаря близости Большого Магелланова облака впервые удалось обнаружить на архивных снимках предсверхновую, ####################################################################### то есть взорвавшуюся звезду — ею оказался голубой сверхгигант Sanduleak –69°202, описанный в 1969 году румыно-американским астрономом Ником Сандуляком. ########################################################### Кольца не были выброшены при взрыве сверхновой, иначе они должны были бы мгновенно появиться на расстоянии в несколько световых месяцев. (Расстояние внешних колец от места взрыва составляет более светового года, а внутреннего — чуть более светового полугода, и кинематика колец известна.) Значит, они существовали и до вспышки. Просто взрыв «подсветил» их. Телескоп «Хаббл», запущенный в апреле 1990 года, «увидел» внутреннее кольцо вокруг взорвавшейся сверхновой уже 23-24 августа 1990 года. Два внешних, менее ярких, кольца впервые были обнаружены на снимках «Хаббла» в 1994 году. Необычные свойства самой сверхновой (химические аномалии) вкупе с данными по звезде-прародительнице давно наводили ученых на мысль о том, что голубой сверхгигант Sk –69°202 был образован в результате слияния двух массивных звезд. ############################################################### http://elementy.ru/novosti_nauki/430478

milstar: Самую большую услугу современной космогонии призваны оказать две категории звезд: новые и переменные звезды, изменения которых проявляются не в течение исключительно больших по сравнению с человеческой жизнью промежутков времени, а легко наблюдаются на протяжении дней или месяцев. http://coollib.com/b/292170/read

milstar: она была разработана американским астрофизиком Бете. Существенным агентом этих превращений является водород. Окончательным результатом совокупности этих ядерных реакций является превращение четырех ядер водорода в одно ядро гелия.

milstar: Согласно Демокриту атомы беспорядочно и безостановочно движутся в пустом пространстве. При столкновениях атомы, сцепляясь друг с другом посредством крючков, которыми они, по предположению Демокрита, обладают, все время образовывали и образуют бесчисленное множество вихрей различного характера (в зависимости от условий взаимных столкновений). Наш мир произошел из одного особого вихря, который после своего образования все более и более разрастался. Самые крупные атомы сгруппировались в центре и образовали Землю; самые маленькие атомы, тесно сцепившиеся друг с другом, образовали небесный свод, где вследствие перемешивания огня с воздухом загораются звезды. Солнце и Луна имеют такое же вихревое происхождение, как и Земля. Эти миры, некогда отличные от нашей Земли, были «захвачены» ею подобно тому, как некоторые современные астрономы вместе с О. Ю. Шмидтом полагают, что вещество, из которого впоследствии образовались планеты, было захвачено Солнцем. Наш мир, по мнению Демокрита, не будет существовать вечно, он когда-нибудь «умрет», и его атомы, рассеянные в пространстве, будут служить материалом для образования других миров. Таким образом, Демокрит говорит не о творении, а о бесконечном (как в прошлом, так и в будущем) процессе рождения миров, затем рассеивающихся в бесконечном пространстве. Вечны лишь атомы и пустота. Эпикур Самосский (341–270 до н. э.) продолжил ста годами позднее космогонические идеи Демокрита, ученик которого Наузифан был учителем Эпикура. Эпикур довольно серьезно изменил их в одном частном пункте. Демокрит предполагал, что атомы могут двигаться по всем направлениям и что наиболее крупные атомы двигались быстрее, нагоняли более мелкие и сталкивались с ними. Это позволяло Демокриту успешно отразить возражения своих противников-идеалистов, которые утверждали, что приходится допустить вмешательство в некоторый момент сверхъестественной силы, чтобы заставить атомы, падающие совместно, столкнуться и образовать вихри. По мнению же Эпикура все атомы, большие или маленькие, движутся с одной и той же скоростью вдоль параллельных прямых наподобие капель дождя. Для того чтобы они могли встретиться, необходимо предположить, что каждый из атомов может слегка отклоняться от прямой линии.

milstar: , акад. В. А. Амбарцумян, пояснил, почему в СССР проявляется особый интерес к изучению звезд в неустойчивых состояниях: «Почему изучение неустойчивых состояний представляет особенно большой интерес для космогонии? Известно, что двигателем для всякого процесса развития в природе являются противоречия. Эти противоречия особенно ярко проявляются, когда система или тело находятся в неустойчивом состоянии, когда в них происходит борьба противоположных сил, когда они находятся на поворотных этапах своего развития. Поэтому как советские астрономы, так и многие астрономы других стран идут прежде всего в направлении изучения неустойчивых объектов. Это не значит вовсе, что следует заниматься только этими объектами. Но это означает, что объекты, находящиеся в неустойчивом состоянии, заслуживают особого внимания». Опираясь на тот факт, что некоторые звезды, как, например, новые и звезды типа Вольф — Райе, теряют за короткое время очень значительное количество своего вещества, В. А. Амбарцумян усматривает возможность переходов звезд с одной ветви диаграммы Рессела на другую

milstar: Супруги Жолио-Кюри пошли гораздо дальше в своих исследованиях и сумели осуществить превращение одних химических элементов в другие, подвергая их воздействию излучения различного рода. В большом числе случаев образованные таким путем новые элементы сразу же распадаются, давая начало третьим элементам (искусственная радиоактивность). Так, например, бомбардируя соответствующим излучением алюминий, эти ученые превратили его в неустойчивый фосфор, который вел себя как радиоактивный элемент в течение нескольких минут, а затем (через достаточно большой промежуток времени) окончательно превращался в кремний. В то же самое время можно было наблюдать образование многочисленных позитронов. Следует обратить внимание на то, что атомное число (соответствующее степени сложности атомной структуры) для получаемого кремния меньше такового для фосфора, но больше атомного числа первичного алюминия.

milstar: Принцип, на котором основан этот метод, довольно прост. Известно, что свет образован фотонами и что тела выглядят тем более яркими, чем больше приходит к нам фотонов за один и тот же промежуток времени (например, за одну секунду). Если тело приближается к нам или если мы приближаемся к нему, то мы движемся навстречу фотонам, излучаемым этим телом, и в одну секунду нас достигает большее число фотонов, чем в том случае, когда мы оставались бы неподвижными по отношению к источнику света. Если, напротив, тело удаляется от нас, или мы сами удаляемся от него, то нас достигает за одну секунду меньшее количество фотонов, а если тело удаляется от нас со скоростью света, то к нам не придет ни один фотон. Точно так же путник, наблюдая проходящую колонну демонстрантов, сможет увидеть за одно и то же время меньше или больше людей в зависимости от того, идет ли он сам в том же направлении, в котором движется демонстрация (конечно, более медленно, поскольку в ином случае сравнение не имеет смысла), остается на месте или идет в противоположном направлении. Отсюда следует, что если спиральные туманности действительно удаляются от нас, то их свет должен быть не только более красным, но также и менее интенсивным. Из двух одинаковых галактик, расположенных на одном и том же расстоянии от нас, та галактика, расстояние до которой остается неизменным, будет казаться более яркой, чем та, которая удаляется. Следовательно, если гипотеза о разбегании галактик соответствует действительности, то число очень ярких на вид галактик должно уменьшаться с расстоянием быстрее, чем в случае ошибочности этой гипотезы; наоборот, число галактик, становящихся невидимыми, должно расти (само собой разумеется, при условии, что в наблюдаемой части пространства распределение туманностей по их собственной яркости в среднем равномерно). Таким образом, должен был бы иметь место дополнительный эффект уменьшения плотности распределения видимых галактик с расстоянием. К несчастью, другие причины, связанные с покраснением света и действующие независимо от того, расширяется или не расширяется вселенная, приводят к эффектам уменьшения плотности видимого распределения того же самого порядка, и это затрудняет измерения. Первые результаты, полученные этим методом в 1936 г. Хабблом, привели к противоречию с релятивистской теорией расширения вселенной. Само собой разумеется, эти результаты, поскольку они подрывали сами основы теории расширения, подверглись сильной критике.

milstar: Метод, предложенный Хабблом, позволит (возможно, при условии достаточного увеличения числа наблюдений и их точности) окончательно решить этот вопрос. Но не исключена возможность, что будет открыт какой-то новый эффект, пропорциональный расстоянию, позволяющий объяснить покраснение фотонов на их пути в межзвездном пространстве. Только с того момента, когда исследования позволят дать окончательный ответ о реальности «разбегания» галактик, наука сможет взяться за общую проблему эволюции всей совокупности небесных тел в той части вселенной, которую мы можем наблюдать, и в течение промежутков времени, превышающих возраст самых старых звезд. Если будет признана реальность расширения, то это расширение следует рассматривать как местное явление (как бы ни были велики его масштабы), свойственное всей Метагалактике (в определении, принимаемом советскими учеными) или некоторой ее части, и надо будет искать, не имеются ли в других частях вселенной скоплений галактик, находящихся в состоянии сжатия. Мы встречаемся здесь с идеей, выраженной еще Толменом незадолго до его смерти: «Я полагаю, — писал Толмен,[133] — что наше внимание должно быть главным образом уделено не приблизительной пропорциональности красного смещения расстоянию, не приблизительно равномерному распределению галактик, но именно отклонениям, которые мы здесь находим. Возможно, что мы даже обнаружим области вселенной, где имеет место скорее сжатие, чем расширение. Во всяком случае, я на это надеюсь». Эти местные сжатия материи (происходящие также в очень больших масштабах) в некоторых областях пространства могли бы объяснить (по крайней мере частично) образование тяжелых элементов и восстановление вещества. Если, напротив, «разбегание» галактик окажется лишь видимым явлением, то надо будет решать проблему о том, как в более «спокойной» вселенной, т. е. такой, где нет гигантских местных расширений или сжатий, соответствующих предыдущей гипотезе, излучение может превращаться в вещество.

milstar: НОВЫЕ И СВЕРХНОВЫЕ ЗВЕЗДЫ Ю. П. Псковский Издание второе переработанное и дополненное Москва 1985 Книга Ю.П. Псковского рассказывает об объектах, изучение которых занимает в астрофизике исключительное место. С новыми и сверхновыми звездами связано большинство удивительных открытий: радиоизлучающие газовые оболочки и плерионы, пульсары, рентгеновские источники - явления, за которыми скрыты экзотические объекты Вселенной (белые карлики, нейтронные звезды и черные дыры). Книга написана на основе спецкурса, читавшегося автором в ГАИШ МГУ. http://www.astronet.ru/db/msg/1201870/index.html Самой характерной особенностью остатков сверхновых является, пожалуй, их радиоизлучение. Как мы уже знаем, новые звезды испускают слабое радиоизлучение, связанное с высокой температурой их оболочек при вспышках. Остатки же сверхновых принадлежат к числу сильнейших радиоисточников нашей Галактики, если не считать, конечно, самого ядра Галактики. Принципиальной особенностью радиоизлучения остатков является то, что оно не имеет теплового характера, т. е. его интенсивность систематически возрастает с длиной волны. http://www.astronet.ru/db/msg/1201870/10.html

milstar: Самое высокое выделение энергии на грамм расходуемого в ядерной реакции горючего получается при превращении четырех ядер водорода в ядро гелия при высоких температурах с образованием электронов и нейтрино. Но, как высока ни будет температура, эти реакции пойдут медленно, не путем взрыва. Поэтому были изучены другие ядерные реакции. Оказалось, что при температурах в 1 млрд. кельвинов становятся очень быстрыми (т. е. носят характер взрыва) реакции между ядрами водорода и ядрами легких элементов (углерод, кислород, азот и др.). Если бы почему-либо температура недр Солнца поднялась до 1 млрд. кельвинов, то эти ядерные реакции прошли бы в течение одной секунды и Солнце взорвалось бы. Но, поскольку в нашем Солнце ядер легких элементов очень мало, при взрыве выделилось бы всего 1049 эрг энергии. Следовательно, при взрыве сверхновой в ее недрах должно быть легких элементов намного больше, чем в Солнце. Другими словами, это, действительно, должна быть проэволюционировавшая до конца ядерной стадии звезда. Легкие ядра - продукты старых ядерных котлов этой звезды - образуют несколько последовательных зон между внешней водородной оболочкой и железным ядром звезды (рис. 36). Именно эти легкие ядра могут быть взрывчаткой, и выделяющейся при их детонации энергии вполне достаточно, чтобы возникло явление сверхновой. http://www.astronet.ru/db/msg/1201870/12.html

milstar: Представим себе, что недалеко от нас, скажем на расстоянии 10 пс, вспыхнула сверхновая звезда. Что мы будем видеть на небе и какие последствия это вызовет на Земле? Этот вопрос был изучен И.С. Шкловским и В.И. Красовским в 1957 г. Согласно описанию, приведенному в книге И.С. Шкловского "Сверхновые звезды", события будут развиваться так. Примерно в течение одного месяца на небе разгорелась бы яркая звезда, достигая в максимуме блеска -18-й видимой звездной величины. Если вспомнить, что блеск Солнца составляет -27 звездных величин, а Луны в полнолуние -12.6 звездной величины, то сверхновая будет в это время создавать освещенность на Земле в 1000 раз больщую, чем Луна, и всего в 1000 раз меньшую, чем Солнце. Такая звезда была бы хорошо заметна в дневное время, а ночью от нее было бы так же светло, как в период белых ночей в Ленинграде. Без преувеличения можно было бы сказать, что с момента появления сверхновой вся наблюдательная астрономия вскоре свелась бы к наблюдениям сверхновой. Да и как могло бы быть иначе? Ведь, даже когда звезда находилась бы за горизонтом, она вызывала бы сильное свечение неба. http://www.astronet.ru/db/msg/1201870/12.html

milstar: http://lvd.ras.ru/30AnnSN1987A/materials/ Презентации

milstar: В. А.. Амбарцумян считает, что радиогалактики явля-ются результатом процесса разделения первоначаль-ного тела на два тела — две удаляющиеся друг от друга галактики. Стадия деления — переход материи из более плотного состояния в менее плотное — вызывается взрыв-ными процессами, которые сопровождаются интенсивным радиоизлучением. Радиогалактика, следовательно, есть стадия, через которую проходит каждая галактика в самый ранний период своего развития. В гипотезе деления естественно объясняется тесное и взаимно центральное расположение компонентов двойных радиогалактик. Однако не вполне раскрытым остается механизм образования радиоизлу-чения. Но нужно иметь в виду, что мы не знаем аналогов такого грандиозного процесса, как возможный процесс разделения галактик в результате взрыва, и потому не-удивительно, что сам механизм взрыва и сопровождаю-щие его процессы пока остаются неясными. Однако можно предполагать, что при взрыве радиогалактики, как и при вспышке сверхновой, образуется большое количество частиц, летящих с огромными скоростями в магнитных полях и порождающих синхротронное излучение. Это излучение, по-видимому, составляет главную часть опти-ческого излучения и полностью определяет радиоизлуче-ние радиогалактики. http://www.allkosmos.ru/radiogalaktiki/ В. А. Амбарцумян указал, что изучение снимка источника радиоизлучения Лебедь А убеждает в том, что если наблюдается столкновение двухгалактик, то это столкновение — центральное с точным попаданием ядра в ядро.

milstar: Радиоисточник Лебедь А излучает в радиодиапазоне и оптическом диапазоне 10^38 Дж/с. Стадия радиогалакти-ки не может быть длительной. Можно предположить, что она длится около 1 млн. лет. Тогда за период пребыва-ния в стадии радиогалактики типа Лебедь А излучается 3 • 1051 Дж. Эта энергия (синхротронного излучения) выз-вана замедлением движения релятивистских частиц в магнитных полях. Но это только небольшая доля — от 0,01 до 0,001 всей энергии, развязанной взрывом. Поэто-му энергию взрыва радиогалактики нужно оценить в 10^53—10^54 Дж. При полном переходе водорода Солнца в гелий выделится 10^45 Дж. Значит, энергия взрыва радиогалактики равна энергии перехода водорода в гелий почти у миллиарда солнц. У Солнца этот переход проте-кает около десяти миллиардов лет. А у радиогалактики энергия, равная энергии перехода водорода в гелий у миллиарда солнц, освобождается мгновенно в результате грандиозного взрыва.



полная версия страницы